ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of five INTEGRAL sources located towards the Scutum Arm

144   0   0.0 ( 0 )
 نشر من قبل Arash Bodaghee
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Arash Bodaghee




اسأل ChatGPT حول البحث

Results are presented for XMM-Newton observations of five hard X-ray sources discovered by INTEGRAL in the direction of the Scutum Arm. Each source received more than 20 ks of effective exposure time. We provide refined X-ray positions for all five targets enabling us to pinpoint the most likely counterpart in optical/infrared archives. Spectral and timing information (much of which are provided for the first time) allow us to give a firm classification for IGR J18462-0223 and to offer tentative classifications for the others. For IGR J18462-0223, we discovered a coherent pulsation period of 997+-1 s which we attribute to the spin of a neutron star in a highly-obscured (nH = 2e23 /cm2) high-mass X-ray binary (HMXB). This makes IGR J18462-0223 the seventh supergiant fast X-ray transient (SFXT) candidate with a confirmed pulsation period. IGR J18457+0244 is a highly-absorbed (nH = 8e23 /cm2) source in which the possible detection of an iron line suggests an active galactic nucleus (AGN) of type Sey-2 situated at z = 0.07(1). A periodic signal at 4.4 ks could be a quasi-periodic oscillation which would make IGR J18457+0244 one of a handful of AGN in which such features have been claimed, but a slowly-rotating neutron star in an HMXB can not be ruled out. IGR J18482+0049 represents a new obscured HMXB candidate with nH = 4e23 /cm2. We tentatively propose that IGR J18532+0416 is either an AGN or a pulsar in an HMXB system. The X-ray spectral properties of IGR J18538-0102 are consistent with the AGN classification that has been proposed for this source.

قيم البحث

اقرأ أيضاً

We present here the results of our analysis of X-ray properties of Seyfert 2 galaxy NGC 3281, based on the observational data obtained by XMM-Newton and INTEGRAL within the energy ranges 0.2-12 keV and 20-150 keV, respectively. The XMM-Newton spectru m of this object is presented for the first time. We show that fitting the X-ray spectrum of this galaxy with models based on the reflection from the disc with infinite column density yields non-physical results. More appropriate fit takes into account both transmitted and reflected emission, passed through a gas-dusty torus-like structure. Keeping this in mind, to model the inhomogeneous clumpy torus, we used the MYTorus model. Hence, we propose that the torus of NGC 3281 is not continuous structure, but it consists of separate clouds, which is in a good agreement with the results of near-IR observations. Using this assumption, we found that the torus inclination angle and the hydrogen column density are 66.98^{+2.63}_{-1.34} degrees and 2.08^{+0.35}_{-0.18}x10^{24} cm^{-2}, respectively. Also, the emission of the hot diffuse gas with temperature ~590 eV and warm absorption were detected.
The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectru m of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4$sigma$ location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood $> 10$) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail.
61 - S.Mereghetti , D.Gotz , A.Tiengo 2003
We present INTEGRAL and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB030227, the first GRB for which the quick localization obtained with the INTEGRAL Burst Alert System (IBAS) has led to the discovery of X-r ay and optical afterglows. GRB030227 had a duration of about 20 s and a peak flux of 1.1 photons cm^-2 s^-1 in the 20-200 keV energy range. The time averaged spectrum can be fit by a single power law with photon index about 2 and we find some evidence for a hard to soft spectral evolution. The X-ray afterglow has been detected starting only 8 hours after the prompt emission, with a 0.2-10 keV flux decreasing as t^-1 from 1.3x10e-12 to 5x10e-13 erg cm^-2 s^-1. The afterglow spectrum is well described by a power law with photon index 1.94+/-0.05 modified by a redshifted neutral absorber with column density of several 10e22 cm^-2. A possible emission line at 1.67 keV could be due to Fe for a redshift z=3, consistent with the value inferred from the absorption.
XMM-Newton has observed the X-ray sky since early 2000. The XMM-Newton Survey Science Centre Consortium has published catalogues of X-ray and ultraviolet sources found serendipitously in the individual observations. This series is now augmented by a catalogue dedicated to X-ray sources detected in spatially overlapping XMM-Newton observations. The aim of this catalogue is to explore repeatedly observed sky regions. It thus makes use of the long(er) effective exposure time per sky area and offers the opportunity to investigate long-term flux variability directly through the source detection process. A new standardised strategy for simultaneous source detection on multiple observations is introduced. It is coded as a new task within the XMM-Newton Science Analysis System and used to compile a catalogue of sources from 434 stacks comprising 1,789 overlapping XMM-Newton observations that entered the 3XMM-DR7 catalogue, have a low background and full-frame readout of all EPIC cameras. The first stacked catalogue is called 3XMM-DR7s. It contains 71,951 unique sources with positions and parameters such as fluxes, hardness ratios, quality estimates, and information on inter-observation variability. About 15% of the sources are new with respect to 3XMM-DR7. Through stacked source detection, the parameters of repeatedly observed sources can be determined with higher accuracy than in the individual observations. The method is more sensitive to faint sources and tends to produce fewer spurious detections. With this first stacked catalogue we demonstrate the feasibility and benefit of the approach. It supplements the large data base of XMM-Newton detections by additional, in particular faint, sources and adds variability information. In the future, the catalogue will be expanded to larger samples and continued within the series of serendipitous XMM-Newton source catalogues.
On 2003 September 17 INTEGRAL discovered a bright transient source 3 degrees from the Galactic Center, IGR J17544-2619. The field containing the transient was observed by XMM-Newton on 2003 March 17 and September 11 and 17. A bright source, at a posi tion consistent with the INTEGRAL location, was detected by the European Photon Imaging Camera (EPIC) during both September observations with mean 0.5-10 keV unabsorbed luminosities of 1.1x10^35 and 5.7x10^35 erg s-1 for an (assumed) distance of 8 kpc. The source was not detected in 2003 March, with a 0.5-10 keV luminosity of < 3.8x10^32 erg s-1. The September 11 and 17 EPIC spectra can be represented by a power-law model with photon indices of 2.25+/-0.15 and 1.42+/-0.17, respectively. Thus, the 0.5-10 keV spectrum hardens with increasing intensity. The low-energy absorption during both September observations is comparable to the interstellar value. The X-ray lightcurves for both September observations show energy dependent flaring which may be modeled by changes in either low-energy absorption or power-law index.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا