ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation of an Exponentially Rising Optical Pulse for Efficient Excitation of Single Atoms in Free Space

221   0   0.0 ( 0 )
 نشر من قبل Christian Kurtsiefer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope that is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator (EOM). The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single Rb-87 atom.



قيم البحث

اقرأ أيضاً

We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to a higher excitation probability for fixed low average photon numbers, in accordance to a time-reversed Weisskopf-Wigner model. We characterize the atomic transition dynamics for a wide range of the average photon numbers, and are able to saturate the optical transition of a single atom with ~50 photons in a pulse by a strong focusing technique. For photon numbers of ~1000 in a 15ns long pulse, we clearly observe Rabi oscillations.
A new method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding a UV attosecond pulse to an infrared (IR) few-cycle pulse at a proper time, only one return of the EWP to the parent ion is selected to effectively contribute to the harmonics, then an isolated two-cycle 130-as pulse with a bandwidth of 45 eV is obtained. After complementing the chirp, an isolated single-cycle attosecond pulse with a duration less than 100 as seems achievable. In addition, the contribution of the quantum trajectories can be selected by adjusting the delay between the IR and UV fields. Using this method, the harmonic and attosecond pulse yields are efficiently enhanced in contrast to the scheme [G. Sansone {it et al.}, Science {bf314}, 443 (2006)] using a few-cycle IR pulse in combination with the polarization gating technique.
79 - Ya Yang , Yan Liu , Jing Lu 2020
We study the entanglement dynamics of two atoms coupled to their own Jaynes-Cummings cavities in single-excitation space. Here we use the concurrence to measure the atomic entanglement. And the partial Bell states as initial states are considered. Ou r analysis suggests that there exist collapses and recovers in the entanglement dynamics. The physical mechanism behind the entanglement dynamics is the periodical information and energy exchange between atoms and light fields. For the initial Partial Bell states, only if the ratio of two atom-cavity coupling strengths is a rational number, the evolutionary periodicity of the atomic entanglement can be found. And whether there is time translation between two kinds of initial partial Bell state cases depends on the odd-even number of the coupling strength ratio.
We demonstrate the generation of an optical dipole wave suitable for the process of efficiently coupling single quanta of light and matter in free space. We employ a parabolic mirror for the conversion of a transverse beam mode to a focused dipole wa ve and show the required spatial and temporal shaping of the mode incident onto the mirror. The results include a proof of principle correction of the parabolic mirrors aberrations. For the application of exciting an atom with a single photon pulse we demonstrate the creation of a suitable temporal pulse envelope. We infer coupling strengths of 89% and success probabilities of up to 87% for the application of exciting a single atom for the current experimental parameters.
We report on the demonstration of a light-matter interface coupling light to a single $^{174}textrm{Yb}^+$ ion in free space. The interface is realized through a parabolic mirror partially surrounding the ion. It transforms a Laguerre-Gaussian beam i nto a linear dipole wave converging at the mirrors focus. By measuring the non-linear response of the atomic transition we deduce the power required for reaching an upper-level population of $1/4$ to be $692pm20~textrm{pW}$ at half linewidth detuning from the atomic resonance. Performing this measurement while scanning the ion through the focus provides a map of the focal intensity distribution. From the measured power we infer a coupling efficiency of $7.2pm0.2~%$ on the linear dipole transition when illuminating from half solid angle, being among the best coupling efficiencies reported for a single atom in free space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا