ﻻ يوجد ملخص باللغة العربية
We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope that is transferred first on a radio frequency carrier, and then on a coherent cw laser beam with an electro-optical phase modulator (EOM). The temporally shaped sideband is then extracted with an optical resonator and can be used to efficiently excite a single Rb-87 atom.
We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to
A new method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding
We study the entanglement dynamics of two atoms coupled to their own Jaynes-Cummings cavities in single-excitation space. Here we use the concurrence to measure the atomic entanglement. And the partial Bell states as initial states are considered. Ou
We demonstrate the generation of an optical dipole wave suitable for the process of efficiently coupling single quanta of light and matter in free space. We employ a parabolic mirror for the conversion of a transverse beam mode to a focused dipole wa
We report on the demonstration of a light-matter interface coupling light to a single $^{174}textrm{Yb}^+$ ion in free space. The interface is realized through a parabolic mirror partially surrounding the ion. It transforms a Laguerre-Gaussian beam i