ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray warm absorber and nuclear obscuration in the Seyfert 1.8 galaxy ESO 113-G010

117   0   0.0 ( 0 )
 نشر من قبل Missagh Mehdipour
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first analysis of the X-ray warm absorber and nuclear obscuration in the Seyfert 1.8 galaxy ESO 113-G010. We used archival data from a 100 ks XMM-Newton observation made in 2005. From high resolution spectroscopy analysis of the RGS data, we detect absorption lines originating from a warm absorber consisting of two distinct phases of ionisation, with log xi ~ 3.2 and 2.3 respectively. The higher-ionised component has a larger column density and outflow velocity (N_H ~ 1.6 x 10^22 cm^-2, v ~ -1100 km/s) than the lower-ionised component (N_H ~ 0.5 x 10^22 cm^-2, v ~ -700 km/s). The shape of the optical-UV continuum and the large Balmer decrement (H_alpha/H_beta ~ 8) indicate significant amount of reddening is taking place in our line of sight in the host galaxy of the AGN; however, the X-ray spectrum is not absorbed by cold neutral gas intrinsic to the source. We discuss different explanations for this discrepancy between the reddening and the X-ray absorption, and suggest that the most likely solution is a dusty warm absorber. We show that dust can exist in the lower-ionised phase of the warm absorber, which causes the observed reddening of the optical-UV emission, whereas the X-rays remain unabsorbed due to lack of cold neutral gas in the ionised warm absorber. Furthermore, we have investigated the uncertainties in the construction of the Spectral Energy Distribution (SED) of this object due to obscuration of the nuclear source and the effects this has on the photoionisation modelling of the warm absorber. We show how the assumed SEDs influence the thermal stability of each phase and whether or not the two absorber phases in ESO 113-G010 can co-exist in pressure equilibrium.



قيم البحث

اقرأ أيضاً

Reverberation lags have recently been discovered in a handful of nearby, variable AGN. Here, we analyze a ~100 ksec archival XMM-Newton observation of the highly variable AGN, ESO 113-G010 in order to search for lags between hard, 1.5 - 4.5 keV, and soft, 0.3 - 0.9 keV, energy X-ray bands. At the lowest frequencies available in the lightcurve (<1.5E-4 Hz), we find hard lags where the power-law dominated hard band lags the soft band (where the reflection fraction is high). However, at higher frequencies in the range (2-3)E-4 Hz we find a soft lag of -325 +/- 89 s. The general evolution from hard to soft lags as the frequency increases is similar to other AGN where soft lags have been detected. We interpret this soft lag as due to reverberation from the accretion disk, with the reflection component responding to variability from the X-ray corona. For a black hole mass of 7E6 M(solar) this corresponds to a light-crossing time of ~9 R_g/c, however, dilution effects mean that the intrinsic lag is likely longer than this. Based on recent black hole mass-scaling for lag properties, the lag amplitude and frequency are more consistent with a black hole a few times more massive than the best estimates, though flux-dependent effects could easily add scatter this large.
In about half of Seyfert galaxies, the X-ray emission is absorbed by an optically thin, ionized medium, the so-called Warm Absorber, whose origin and location is still a matter of debate. The aims of this paper is to put more constraints on the warm absorber by studying its variability. We analyzed the X-ray spectra of a Seyfert 1 galaxy, Mrk 704, which was observed twice, three years apart, by XMM-Newton. The spectra were well fitted with a two zones absorber, possibly covering only partially the source. The parameters of the absorbing matter - column density, ionization state, covering factor - changed significantly between the two observations. Possible explanations for the more ionized absorber are a torus wind (the source is a polar scattering one) or, in the partial covering scenario, an accretion disk wind. The less ionized absorber may be composed of orbiting clouds in the surroundings of the nucleus, similarly to what already found in other sources, most notably NGC 1365.
(Abridged) We present a two month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of 7 observations. We analyze the response in the opacity of the gas that forms the ionized absorber to ionizing flux variations. Despit e variations by a factor of 4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling confirms the lack of opacity variations for an absorbing component with high ionization. Instead, the models tentatively suggest that the ionization parameter of a low ionization absorbing component might be changing with the ionizing flux, as expected for gas in photoionization equilibrium. Using the lack of variations, we set an upper limit of n_e <2.0E7 cm-3 for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R > 0.033 pc). If the variations in the low ionization component are real, they imply n_e >9.8E4 cm-3 and R < 3 pc. We discuss our results in terms of two different scenarios: a large scale outflow originating in the inner parts of the accretion disk, or a thermally driven wind originating much farther out. Given the large distance of the wind, the implied mass outflow rate is also large (Mw > 0.08 Maccr). The associated total kinetic energy deployed by the wind in the host galaxy (>1.2E56 erg) can be enough to disrupt the interstellar medium, possibly regulating large scale star formation. The total mass and energy ejected by the wind is still lower than the one required for cosmic feedback, even when extrapolated to quasar luminosities. Such feedback would require that we are observing the wind before it is fully accelerated.
We present a spectral and imaging analysis of the XMM-Newton and Chandra observations of the Seyfert 2 galaxy ESO138-G001, with the aim of characterizing the circumnuclear material responsible for the soft (0.3-2.0 keV) and hard (5-10 keV) X-ray emis sion. We confirm that the source is absorbed by Compton-thick gas. However, if a self-consistent model of reprocessing from cold toroidal material is used (MYTorus), a possible scenario requires the absorber to be inhomogenous, its column density along the line of sight being larger than the average column density integrated over all lines- of-sight through the torus. The iron emission line may be produced by moderately ionised iron (FeXII-FeXIII), as suggested by the shifted centroid energy and the low K{beta}/K{alpha} flux ratio. The soft X-ray emission is dominated by emission features, whose main excitation mechanism appears to be photoionisation, as confirmed by line diagnostics and the use of self-consistent models (CLOUDY).
We revisit the relation between H2O maser detection rate and nuclear obscuration for a sample of 114 Seyfert galaxies, drawn from the CfA, 12um and IRAS F25/F60 catalogs. These sources have mid-infrared spectra from the Spitzer Space Telescope and th ey are searched for X-ray and [O III], 5007Angstrom fluxes from the literature. We use the strength of the [O IV], 25.9um emission line as tracer for the intrinsic AGN strength. After normalization by [O IV] the observed X-ray flux provides information about X-ray absorption. The distribution of X-ray / [O IV] flux ratios is significantly different for masers and non-masers: The maser detected Seyfert-2s (Sy 1.8-2.0) populate a distinct X-ray / [O IV] range which is, on average, about a factor four lower than the range of Seyfert-2 non-masers and about a factor of ten lower than the range of Seyfert-1s (Sy 1.0-1.5). Non-masers are almost equally distributed over the entire X-ray / [O IV] range. This provides evidence that high nuclear obscuration plays a crucial role for the probability of maser detection. Furthermore, after normalization with [O IV], we find a similar but weaker trend for the distribution of the maser detection rate with the absorption of the 7um dust continuum. This suggests that the obscuration of the 7 um continuum occurs on larger spatial scales than that of the X-rays. Hence, in the AGN unified model, at moderate deviation from edge-on, the 7um dust absorption may occur without proportionate X-ray absorption. The absorption of [O III] appears unrelated to maser detections. The failure to detect masers in obscured AGN is most likely due to insufficient observational sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا