ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-thermal response of YBCO thin films to picosecond THz pulses

53   0   0.0 ( 0 )
 نشر من قبل Petra Probst
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The photoresponse of YBa2Cu3O7-d thin film microbridges with thicknesses between 15 and 50 nm was studied in the optical and terahertz frequency range. The voltage transients in response to short radiation pulses were recorded in real time with a resolution of a few tens of picoseconds. The bridges were excited by either femtosecond pulses at a wavelength of 0.8 mu m or broadband (0.1 - 1.5 THz) picosecond pulses of coherent synchrotron radiation. The transients in response to optical radiation are qualitatively well explained in the framework of the two-temperature model with a fast component in the picosecond range and a bolometric nanosecond component whose decay time depends on the film thickness. The transients in the THz regime showed no bolometric component and had amplitudes up to three orders of magnitude larger than the two-temperature model predicts. Additionally THz-field dependent transients in the absence of DC bias were observed. We attribute the response in the THz regime to a rearrangement of vortices caused by high-frequency currents.

قيم البحث

اقرأ أيضاً

High-temperature superconducting YBa2Cu3O7-d (YBCO) thin-film detectors with improved responsivities were developed for fast time-domain measurements in the THz frequency range. YBCO thin films of 30 nm thickness were patterned to micro- and nanobrid ges and embedded into planar log-spiral THz antennas. The YBCO thin-film detectors were characterized with continuous wave radiation at 0.65 THz. Responsivity values as high as 710 V/W were found for the YBCO nanobridges. Pulsed measurements in the THz frequency range were performed at the electron storage ring ANKA from the Karlsruhe Institute of Technology (KIT). Due to the high responsivities of the nanobridges no biasing was required for the detection of the coherent synchrotron radiation pulses achieving very good agreement between the measured pulse shapes and simulations.
We present a comparative study of the angular dependent critical current density in YBa2Cu3O7 films deposited on IBAD MgO and on single crystal MgO and SrTiO3 substrates. We identify three angular regimes where pinning is dominated by different types of correlated and uncorrelated defects. We show that those regimes are present in all cases, indicating that the pinning mechanisms are the same, but their extension and characteristics are sample dependent, reflecting the quantitative differences in texture and defect density. In particular, the more defective nature of the films on IBAD turns into an advantage as it results in stronger vortex pinning, demonstrating that the critical current density of the films on single crystals is not an upper limit for the performance of the IBAD coated conductors.
We report on terahertz frequency-domain spectroscopy (THz-FDS) experiments in which we measure charge carrier dynamics and excitations of thin-film superconducting systems at low temperatures in the THz spectral range. The characteristics of the set- up and the experimental procedures are described comprehensively. We discuss the single-particle density of states and a theory of electrodynamic absorption and optical conductivity of conventional superconductors. We present the experimental performance of the setup at low temperatures for a broad spectral range from 0.1 - 1.1 THz by the example of ultra-thin films of weakly disordered superconductors niobium nitride (NbN) and tantalum nitride (TaN) with different values of critical temperatures. Furthermore, we analyze and interpret our experimental data within the framework of conventional Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.
The response of superconducting pair-breaking detectors is dependent on the details of the quasiparticle distribution. In Kinetic Inductance Detectors (KIDs), where both pair breaking and non-pair breaking photons are absorbed simultaneously, calcula ting the detector response therefore requires knowledge of the often nonequilibrium distributions. The quasiparticle effective temperature provides a good approximation to these nonequilibrium distributions. We compare an analytical expression relating absorbed power and the quasiparticle effective temperature in superconducting thin films to full solutions for the nonequilibrium distributions, and find good agreement for a range of materials, absorbed powers, photon frequencies and temperatures typical of KIDs. This analytical expression allows inclusion of nonequilibrium effects in device models without solving for the detailed distributions. We also show our calculations of the frequency dependence of the detector response are in agreement with recent experimental measurements of the response of Ta KIDs at THz frequencies.
76 - D. Janjusevic 2006
The microwave response of high quality niobium films in a perpendicular static magnetic field has been investigated. The complex frequency shift was measured up to the upper critical fields. The data have been analyzed by the effective conductivity m odel for the type-II superconductors in the mixed state. This model is found to yield consistent results for the coherence lengths in high-kappa superconducting samples, and can be used with HTSC even at temperatures much below T_c. It is shown that for samples with high values of depinning frequency, one should measure both components of the complex frequency shift in order to determine the flow resistivity. The thick Nb film (160 nm) has low resistivity at 10 K, comparable to the best single crystals, and low kappa value. In contrast, the thinnest (10 nm) film has kappa ~ 9.5 and exhibits a high depinning frequency (~20 GHz). The upper critical field determined from microwave measurements is related to the radius of nonoverlaping vortices, and appears to be larger than the one determined by the transition to the normal state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا