ﻻ يوجد ملخص باللغة العربية
We study multiplicities of unipotent characters in tensor products of unipotent characters of GL(n,q). We prove that these multiplicities are polynomials in q with non-negative integer coefficients. We study the degree of these polynomials and give a necessary and sufficient condition in terms of the representation theory of symmetric groups for these polynomials to be non-zero.
We construct, for any finite commutative ring $R$, a family of representations of the general linear group $mathrm{GL}_n(R)$ whose intertwining properties mirror those of the principal series for $mathrm{GL}_n$ over a finite field.
In previous work, the authors confirmed the speculation of J. G. Thompson that certain multiquadratic fields are generated by specified character values of sufficiently large alternating groups $A_n$. Here we address the natural generalization of thi
For an infinite field $F$, we study the cokernel of the map of homology groups $H_{n+1}(mathrm{GL}_{n-1}(F),mathbb{k}) to H_{n+1}(mathrm{GL}_{n}(F),mathbb{k})$, where $mathbb{k}$ is a field such that $(n-2)!in mathbb{k}^times$, and the kernel of the
Let $p$ be any prime. Let $P_n$ be a Sylow $p$-subgroup of the symmetric group $S_n$. Let $phi$ and $psi$ be linear characters of $P_n$ and let $N$ be the normaliser of $P_n$ in $S_n$. In this article we show that the inductions of $phi$ and $psi$ to
We classify all triples $(G,V,H)$ such that $SL_n(q)leq Gleq GL_n(q)$, $V$ is a representation of $G$ of dimension greater than one over an algebraically closed field $FF$ of characteristic coprime to $q$, and $H$ is a proper subgroup of $G$ such tha