ﻻ يوجد ملخص باللغة العربية
Resistance switching effects in metal/perovskite contacts based on epitaxial c-axis oriented Y-Ba-Cu-O (YBCO) thin films with different crystallographic orientations have been studied. Three types of Ag/YBCO junctions with the contact restricted to (i) c-axis direction, (ii) ab-plane direction, and (iii) both were designed and fabricated, and their current-voltage characteristics have been measured. The type (i) junctions exhibited conventional bipolar resistance switching behavior, whereas in other two types the low-resistance state was unsteady and their resistance quickly relaxed to the initial high-resistance state. Physical mechanism based on the oxygen diffusion scenario, explaining such behavior, is discussed.
We study the contact resistance and the transfer characteristics of back-gated field effect transistors of mono- and bi-layer graphene. We measure specific contact resistivity of ~7kohm*um2 and ~30kohm*um2 for Ni and Ti, respectively. We show that th
In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the
The extremely high carrier mobility and the unique band structure, make graphene very useful for field-effect transistor applications. According to several works, the primary limitation to graphene based transistor performance is not related to the m
Vertically aligned ZnO nanotube arrays fabricated on an ITO substrate are found to exhibit strong persistent photoconductivity (PPC) effect and electrically driven conductance switching behavior, though the latter shows a gradual decay from high cond
Reproducible current hysteresis is observed in graphene with a back gate structure in a two-terminal configuration. By applying a back gate bias to tune the Fermi level, an opposite sequence of switching with the different charge carriers, holes and