ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Perspective on the Mass-Area Relationship in Molecular Clouds

59   0   0.0 ( 0 )
 نشر من قبل Chris Beaumont
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite over 30 years of study, the mass-area relationship within and among clouds is still poorly understood both observationally and theoretically. Modern extinction datasets should have sufficient resolution and dynamic range to characterize this relationship for nearby molecular clouds, although recent papers using extinction data seem to yield different interpretations regarding the nature and universality of this aspect of cloud structure. In this paper we try to unify these various results and interpretations by accounting for the different ways cloud properties are measured and analyzed. We interpret the mass-area relationship in terms of the column density distribution function and its possible variation within and among clouds. We quantitatively characterize regional variations in the column density PDF. We show that structures both within and among clouds possess the same degree of universality, in that their PDF means do not systematically scale with structure size. Because of this, mass scales linearly with area.


قيم البحث

اقرأ أيضاً

The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H$_{2}$. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metallicity-dependent star formation models of Ostriker, McKee, and Leroy (2010) and Krumholz (2013) to our observations and find that they both predict the trend in the data, suggesting that the inclusion of a diffuse neutral medium is important at lower metallicity.
We measure the parsec-scale relationship between integrated CO intensity (I_CO) and visual extinction (A_V) in 24 local molecular clouds using maps of CO emission and dust optical depth from Planck. This relationship informs our understanding of CO e mission across environments, but clean Milky Way measurements remain scarce. We find uniform I_CO for a given A_V, with the results bracketed by previous studies of the Pipe and Perseus clouds. Our measured I_CO-A_V relation broadly agrees with the standard Galactic CO-to-H2 conversion factor, the relation found for the Magellanic clouds at coarser resolution, and numerical simulations by Glover & Clark (2016). This supports the idea that CO emission primarily depends on shielding, which protects molecules from dissociating radiation. Evidence for CO saturation at high A_V and a threshold for CO emission at low A_V varies remains uncertain due to insufficient resolution and ambiguities in background subtraction. Resolution of order 0.1 pc may be required to measure these features. We use this I_CO-AV relation to predict how the CO-to-H2 conversion factor (X_CO) would change if the Solar Neighborhood clouds had different dust-to-gas ratio (metallicity). The calculations highlight the need for improved observations of the CO emission threshold and HI shielding layer depth. They are also sensitive to the shape of the column density distribution. Because local clouds collectively show a self-similar distribution, we predict a shallow metallicity dependence for X_CO down to a few tenths of solar metallicity. However, our calculations also imply dramatic variations in cloud-to-cloud X_CO at subsolar metallicity.
We show that the inter-cloud Larson scaling relation between mean volume density and size $rhopropto R^{-1}$, which in turn implies that mass $Mpropto R^2$, or that the column density $N$ is constant, is an artifact of the observational methods used. Specifically, setting the column density threshold near or above the peak of the column density probability distribution function Npdf ($Nsim 10^{21}$ cmalamenos 2) produces the Larson scaling as long as the Npdf decreases rapidly at higher column densities. We argue that the physical reasons behind local clouds to have this behavior are that (1) this peak column density is near the value required to shield CO from photodissociation in the solar neighborhood, and (2) gas at higher column densities is rare because it is susceptible to gravitational collapse into much smaller structures in specific small regions of the cloud. Similarly, we also use previous results to show that if instead a threshold is set for the volume density, the density will appear to be constant, implying thus that $M propto R^3$. Thus, the Larson scaling relation does not provide much information on the structure of molecular clouds, and does not imply either that clouds are in Virial equilibrium, or have a universal structure. We also show that the slope of the $M-R$ curve for a single cloud, which transitions from near-to-flat values for large radii to $alpha=2$ as a limiting case for small radii, depends on the properties of the Npdf.
176 - R. Retes-Romero 2020
Ever since their discovery, Infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbour HM Young Stellar Objects (YSOs). On ly those IRDCs satisfying a certain mass-size criterion, or equivalently above a certain threshold density, are found to contain HMYSOs. In all cases, IRDCs provide ideal conditions for the formation of stellar clusters. In this paper, we study the massive stellar content of IRDCs to re-address the relation between IRDCs and HM star formation. For this purpose, we have identified all IRDCs associated to a sample of 12 Galactic molecular clouds (MCs). The selected MCs have been the target of a systematic search for YSOs in an earlier study. The catalogued positions of YSOs have been used to search all YSOs embedded in each identified IRDC. In total, we have found 834 YSOs in 128 IRDCs. The sample of IRDCs have mean surface densities of 319 Mo/pc2, mean mass of 1062 Mo, and a mass function power-law slope -1.8, which are similar to the corresponding properties for the full sample of IRDCs and resulting physical properties in previous studies. We find that all those IRDCs containing at least one intermediate to high-mass young star satisfy the often-used mass-size criterion for forming HM stars. However, not all IRDCs satisfying the mass-size criterion contain HM stars. We find that the often used mass-size criterion corresponds to 35% probability of an IRDC forming a massive star. Twenty five (20%) of the IRDCs are potential sites of stellar clusters of mass more than 100 Mo.
135 - R. Retes-Romero 2017
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac h IRAS source using 13CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24 micron Spitzer databases.The masses for high luminosity YSOs (Lbol>10~Lsun) are determined individually using Pre Main Sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5 Msun was adopted to determine the masses in the low luminosity YSO population. The star formation rate surface density (sigsfr) corresponding to a gas surface density (siggas) in each MC is obtained by counting the number of the YSOs within successive contours of 13CO line emission. We find a break in the relation between sigsfr and siggas, with the relation being power-law (sigsfr ~ siggas^N) with the index N varying between 1.4 and 3.6 above the break. The siggas at the break is between 150-360 Msun/pc^2 for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt (1998) relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high-mass YSOs to be found preferentially in dense regions at densities higher than 1200 Msun/pc^2 (~0.25 g/cm^2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا