ترغب بنشر مسار تعليمي؟ اضغط هنا

Di-electron spectrum at mid-rapidity in $p+p$ collisions at $sqrt{s} = 200$ GeV

151   0   0.0 ( 0 )
 نشر من قبل Bingchu Huang
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via $e^{+}e^{-}$ decays, from $sqrt{s} = 200$ GeV $p+p$ collisions, measured by the large acceptance experiment STAR at RHIC. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted $omegarightarrow e^{+}e^{-}$ invariant yields are consistent with previous measurements. The mid-rapidity yields ($dN/dy$) of $phi$ and $J/psi$ are extracted through their di-electron decay channels and are consistent with the previous measurements of $phirightarrow K^{+}K^{-}$ and $J/psirightarrow e^{+}e^{-}$. Our results suggest a new upper limit of the branching ratio of the $eta rightarrow e^{+}e^{-}$ of $1.7times10^{-5}$ at 90% confidence level.



قيم البحث

اقرأ أيضاً

The STAR Collaboration at RHIC has measured two-pion correlation functions from p+p collisions at sqrt(s)=200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of str ong non-femtoscopic effects. Our results are put into the context of the world dataset of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p+p and heavy ion collisions, under identical analysis and detector conditions.
We report STAR measurements of the longitudinal double-spin asymmetry A_LL, the transverse single-spin asymmetry A_N, and the transverse double-spin asymmetries A_Sigma and A_TT for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt{s} = 200 GeV. The data represent integrated luminosities of 7.6 /pb with longitudinal polarization and 1.8 /pb with transverse polarization, with 50-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A_N, A_Sigma, or A_TT at mid-rapidity. Recent model calculations indicate the A_N results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A_LL significantly improves the knowledge of gluon polarization in the nucleon.
We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading ord er in the Color Evaporation Model are in agreement with our measurement, while calculations in the Color Singlet Model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of Upsilon data to RHIC energies. The dielectron continuum in the invariant mass range near the Upsilon is also studied to obtain a combined cross section of Drell-Yan plus (b b-bar) -> e+e-.
Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $sqrt{s}$=200 GeV is studied with the STA R detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction (Toward), opposite to the leading jet (Away), and perpendicular to the leading jet (Transverse). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $langle p_{T}rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $langle p_{T}rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $omega$, $rho$, and $phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $dsigma/dy(omega+rhorightarrowmumu) = 80 pm 6 mbox{(stat)} pm 12 mbox{(syst)}$ nb and $dsigma/dy(phirightarrowmumu) = 27 pm 3 mbox{(stat)} pm 4 mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا