ﻻ يوجد ملخص باللغة العربية
On a lattice model, we study the possibility of existence of gapped broken inversion symmetry phase (GBISP) of electrons with long-range Coulomb interaction in bilayer graphene using both self-consistent Hartree-Fock approximation (SCHFA) and the renormalized-ring-diagram approximation (RRDA). RRDA takes into account the charge-density fluctuations beyond the mean field. While GBISP at low temperature and low carrier concentration is predicted by SCHFA, we show here the state can be destroyed by the charge-density fluctuations. We also present a numerical algorithm for calculating the self-energy of electrons with the singular long-range Coulomb interaction on the lattice model.
With the two-band continuum model, we study the broken inversion and time-reversal symmetry state of electrons with finite-range repulsive interactions in bilayer graphene. With the analytical solution to the mean-field Hamiltonian, we obtain the ele
Using a four-band Hamiltonian, we study the phase boundary of spin-polarized-current state (SPCS) of interacting electrons in bilayer graphene. The model of spin-polarized-current state has previously been shown to resolve a number of experimental pu
The discovery of correlated electronic phases, including Mott-like insulators and superconductivity, in twisted bilayer graphene (TBLG) near the magic angle, and the intriguing similarity of their phenomenology to that of the high-temperature superco
Based on the four-band continuum model, we study the ordered-current state (OCS) for electrons in bilayer graphene at the charge neutrality point. The present work resolves the puzzles that (a) the energy gap increases significantly with increasing t
By taking into account the possibility of all the intralayer as well as the interlayer current orderings, we derive an eight-band model for interacting electrons in bilayer graphene. With the numerical solution to the model, we show that only the cur