ﻻ يوجد ملخص باللغة العربية
We investigate an index theorem for a Bogoliubov-de Gennes Hamiltonian (BdGH) describing a topological superconductor with Yang-Mills-Higgs couplings in arbitrary dimensions. We find that the index of the BdGH is determined solely by the asymptotic behavior of the Higgs fields and is independent of the gauge fields. It can be nonvanishing if the dimensionality of the order parameter space is equal to the spatial dimensions. In the presence of point defects there appear localized zero energy states at the defects. Consistency of the index with the existence of zero energy bound states is examined explicitly in a vortex background in two dimensions and in a monopole background in three dimensions.
We continue the study of the nonrelativistic short-distance completions of a naturally light Higgs, focusing on the interplay between the gauge symmetries and the polynomial shift symmetries. We investigate the naturalness of nonrelativistic scalar q
It is shown how, starting from a mapping theorem recently proved between massless quartic scalar field theory and Yang-Mills theory, both two-point functions and spectrum of the Yang-Mills theory can be obtained. These results compare very well with respect to lattice computations.
A well-known result in unconventional superconductivity is the fragility of nodal superconductors against nonmagnetic impurities. Despite this common wisdom, Bi$_2$Se$_3$-based topological superconductors have recently displayed unusual robustness ag
We give a prescription for how to compute the Callias index, using as regulator an exponential function. We find agreement with old results in all odd dimensions. We show that the problem of computing the dimension of the moduli space of self-dual st
We consider two-dimensional Yang-Mills theories on arbitrary Riemann surfaces. We introduce a generalized Yang-Mills action, which coincides with the ordinary one on flat surfaces but differs from it in its coupling to two-dimensional gravity. The qu