ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter and sub-millimeter atmospheric performance at Dome C combining radiosoundings and ATM synthetic spectra

42   0   0.0 ( 0 )
 نشر من قبل Simone De Gregori
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. De Gregori




اسأل ChatGPT حول البحث

The reliability of astronomical observations at millimeter and sub-millimeter wavelengths closely depends on a low vertical content of water vapor as well as on high atmospheric emission stability. Although Concordia station at Dome C (Antarctica) enjoys good observing conditions in this atmospheric spectral windows, as shown by preliminary site-testing campaigns at different bands and in, not always, time overlapped periods, a dedicated instrument able to continuously determine atmospheric performance for a wide spectral range is not yet planned. In the absence of such measurements, in this paper we suggest a semi-empirical approach to perform an analysis of atmospheric transmission and emission at Dome C to compare the performance for 7 photometric bands ranging from 100 GHz to 2 THz. Radiosoundings data provided by the Routine Meteorological Observations (RMO) Research Project at Concordia station are corrected by temperature and humidity errors and dry biases and then employed to feed ATM (Atmospheric Transmission at Microwaves) code to generate synthetic spectra in the wide spectral range from 100 GHz to 2 THz. To quantify the atmospheric contribution in millimeter and sub-millimeter observations we are considering several photometric bands in which atmospheric quantities are integrated. The observational capabilities of this site at all the selected spectral bands are analyzed considering monthly averaged transmissions joined to the corresponding fluctuations. Transmission and pwv statistics at Dome C derived by our semi-empirical approach are consistent with previous works. It is evident the decreasing of the performance at high frequencies. We propose to introduce a new parameter to compare the quality of a site at different spectral bands, in terms of high transmission and emission stability, the Site Photometric Quality Factor.

قيم البحث

اقرأ أيضاً

Semi-empirical models of the solar Chromosphere show in their emission spectrum, tomography property at millimeter, sub-millimeter, and infrared wavelengths for the center of the solar disk. In this work, we studied this property in the solar limb us ing our numerical code PakalMPI, focusing in the region where the solar atmosphere becomes optically thick. Individual contribution of Bremsstrahlung and H- opacities was take into account in the radiative transfer process. We found that the tomography property remains in all the spectrum region under study at limb altitudes. For frequencies be- tween 2 GHz and 5 THz the contribution of Bremsstrahlung is the dominant process above the solar limb.
Magnetic fields, which play a major role in a large number of astrophysical processes from galactic to cosmological scales, can be traced via observations of dust polarization as demonstrated by the Planck satellite results. In particular, low-resolu tion observations of dust polarization have demonstrated that Galactic filamentary structures, where star formation takes place, are associated to well organized magnetic fields. A better understanding of this process requires detailed observations of galactic dust polarization on scales of 0.01 to 0.1 pc. Such high-resolution polarization observations can be carried out at the IRAM 30 m telescope using the recently installed NIKA2 camera, which features two frequency bands at 260 and 150 GHz (respectively 1.15 and 2.05 mm), the 260 GHz band being polarization sensitive. NIKA2 so far in commissioning phase, has its focal plane filled with ~3300 detectors to cover a Field of View (FoV) of 6.5 arcminutes diameter. The NIKA camera, which consisted of two arrays of 132 and 224 Lumped Element Kinetic Inductance Detectors (LEKIDs) and a FWHM (Full-Width-Half-Maximum) of 12 and 18.2 arcsecond at 1.15 and 2.05 mm respectively, has been operated at the IRAM 30 m telescope from 2012 to 2015 as a test-bench for NIKA2. NIKA was equipped of a room temperature polarization system (a half wave plate (HWP) and a grid polarizer facing the NIKA cryostat window). The fast and continuous rotation of the HWP permits the quasi simultaneous reconstruction of the three Stokes parameters, I, Q and U at 150 and 260 GHz. This paper presents the first polarization measurements with KIDs and reports the polarization performance of the NIKA camera and the pertinence of the choice of the polarization setup in the perspective of NIKA2. (abridged)
Deep spectral-line surveys in the mm and sub-mm range can detect thousands of lines per band uncovering the rich chemistry of molecular clouds, star forming regions and circumstellar envelopes, among others objects. The ability to study the faintest features of spectroscopic observation is, nevertheless, limited by a number of factors. The most important are the source complexity (line density), limited spectral resolution and insufficient sideband (image) rejection (SRR). Dual Sideband (2SB) millimeter receivers separate upper and lower sideband rejecting the unwanted image by about 15 dB, but they are difficult to build and, until now, only feasible up to about 500 GHz (equivalent to ALMA Band 8). For example ALMA Bands 9 (602-720 GHz) and 10 (787-950 GHz) are currently DSB receivers. Aims: This article reports the implementation of an ALMA Band 9 2SB prototype receiver that makes use of a new technique called calibrated digital sideband separation. The new method promises to ease the manufacturing of 2SB receivers, dramatically increase sideband rejection and allow 2SB instruments at the high frequencies currently covered only by Double Sideband (DSB) or bolometric detectors. Methods: We made use of a Field Programmable Gate Array (FPGA) and fast Analog to Digital Converters (ADCs) to measure and calibrate the receivers front end phase and amplitude imbalances to achieve sideband separation beyond the possibilities of purely analog receivers. The technique could in principle allow the operation of 2SB receivers even when only imbalanced front ends can be built, particularly at very high frequencies. Results: This digital 2SB receiver shows an average sideband rejection of 45.9 dB while small portions of the band drop below 40 dB. The performance is 27 dB (a factor of 500) better than the average performance of the proof-of-concept Band 9 purely-analog 2SB prototype receiver.
65 - T. A. Perera 2013
A new technique for reliably identifying point sources in millimeter/sub-millimeter wavelength maps is presented. This method accounts for the frequency dependence of noise in the Fourier domain as well as non-uniformities in the coverage of a field. This optimal filter is an improvement over commonly-used matched filters that ignore coverage gradients. Treating noise variations in the Fourier domain as well as map space is traditionally viewed as a computationally intensive problem. We show that the penalty incurred in terms of computing time is quite small due to casting many of the calculations in terms of FFTs and exploiting the absence of sharp features in the noise spectra of observations. Practical aspects of implementing the optimal filter are presented in the context of data from the AzTEC bolometer camera. The advantages of using the new filter over the standard matched filter are also addressed in terms of a typical AzTEC map.
We present the sub-millimeter spectra from 450 GHz to 1550 GHz of eleven nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. We detect CO transitions from J_up = 4 to 12, as well as the two [CI] fine structure lines at 492 and 809 GHz and the [NII] 461 GHz line. We used radiative transfer models to analyze the observed CO spectral line energy distributions (SLEDs). The FTS CO data were complemented with ground-based observations of the low-J CO lines. We found that the warm molecular gas traced by the mid-J CO transitions has similar physical conditions (n_H2 ~ 10^3.2 - 10^3.9 cm^-3 and T_kin ~ 300 - 800 K) in most of our galaxies. Furthermore, we found that this warm gas is likely producing the mid-IR rotational H2 emission. We could not determine the specific heating mechanism of the warm gas, however it is possibly related to the star-formation activity in these galaxies. Our modeling of the [CI] emission suggests that it is produced in cold (T_kin < 30 K) and dense (n_H2 > 10^3 cm^-3) molecular gas. Transitions of other molecules are often detected in our SPIRE/FTS spectra. The HF J=1-0 transition at 1232 GHz is detected in absorption in UGC05101 and in emission in NGC7130. In the latter, near-infrared pumping, chemical pumping, or collisional excitation with electrons are plausible excitation mechanisms likely related to the AGN of this galaxy. In some galaxies few H2O emission lines are present. Additionally, three OH+ lines at 909, 971, and 1033 GHz are identified in NGC7130.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا