ترغب بنشر مسار تعليمي؟ اضغط هنا

Hindered proton collectivity in 28S: Possible magic number at Z=16

360   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Togano
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The reduced transition probability B(E2;0 ->2+) for 28S was obtained experimentally using Coulomb excitation at 53 MeV/nucleon. The resultant B(E2) value 181(31) e2fm4 is smaller than the expectation based on empirical B(E2) systematics. The double ratio |M_n/M_p|/(N/Z) of the 0+ ->2+ transition in 28S was determined to be 1.9(2) by evaluating the M_n value from the known B(E2) value of the mirror nucleus 28Mg, showing the hindrance of proton collectivity relative to that of neutrons. These results indicate the emergence of the magic number Z=16 in the |T_z|=2 nucleus 28S.

قيم البحث

اقرأ أيضاً

77 - D.T. Tran , H.J. Ong , G. Hagen 2017
The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerpr int is the existence of the so-called `magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped explain the nuclear magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number 6 in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.
The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.
An inelastic $alpha$-scattering experiment on the unstable $N=Z$, doubly-magic $^{56}$Ni nucleus was performed in inverse kinematics at an incident energy of 50 A.MeV at GANIL. High multiplicity for $alpha$-particle emission was observed within the l imited phase-space of the experimental setup. This observation cannot be explained by means of the statistical-decay model. The ideal classical gas model at $kT$ = 0.4 MeV reproduces fairly well the experimental momentum distribution and the observed multiplicity of $alpha$ particles corresponds to an excitation energy around 96 MeV. The method of distributed $malpha$-decay ensembles is in agreement with the experimental results if we assume that the $alpha$-gas state in $^{56}$Ni exists at around $113^{+15}_{-17}$ MeV. These results suggest that there may exist an exotic state consisting of many $alpha$ particles at the excitation energy of $113^{+15}_{-17}$ MeV.
Proton-proton correlations were observed for the two-proton decays of the ground states of $^{19}$Mg and $^{16}$Ne. The trajectories of the respective decay products, $^{17}$Ne+p+p and $^{14}$O+p+p, were measured by using a tracking technique with mi crostrip detectors. These data were used to reconstruct the angular correlations of fragments projected on planes transverse to the precursor momenta. The measured three-particle correlations reflect a genuine three-body decay mechanism and allowed us to obtain spectroscopic information on the precursors with valence protons in the $sd$ shell.
Encouraged with the evidence for Z = 6 magic number in neutron-rich carbon isotopes, we have performed relativistic mean-field plus BCS calculations to investigate ground state properties of entire chains of isotopes(isotones) with Z(N) = 6 including even and odd mass nuclei. Our calculations include deformation, binding energy, separation energy, single particle energy, rms radii along with charge and neutron density profile etc., and are found in an excellent match with latest experimental results demonstrating Z = 6 as a strong magic number. N = 6 is also found to own similar kind of strong magic character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا