ﻻ يوجد ملخص باللغة العربية
We present estimates of the basic physical properties (size and albedo) of (90377) Sedna, a prominent member of the detached trans-Neptunian object population and the recently discovered scattered disk object 2010 EK139, based on the recent observations acquired with the Herschel Space Observatory, within the TNOs are Cool! key programme. Our modeling of the thermal measurements shows that both objects have larger albedos and smaller sizes than the previous expectations, thus their surfaces might be covered by ices in a significantly larger fraction. The derived diameter of Sedna and 2010 EK139 are 995 +/- 80 km and 470 +35/-10 km, while the respective geometric albedos are pV 0.32 +/- 0.06 and 0.25 +0.02/-0.05. These estimates are based on thermophysical model techniques.
Thermal emission from Kuiper Belt object (136108) Haumea was measured with Herschel-PACS at 100 and 160 micrometers for almost a full rotation period. Observations clearly indicate a 100-micrometer thermal lightcurve with an amplitude of a factor of
A group of trans-Neptunian objects (TNO) are dynamically related to the dwarf planet 136108 Haumea. Ten of them show strong indications of water ice on their surfaces, are assumed to have resulted from a collision, and are accepted as the only known
The goal of the Herschel Open Time Key programme TNOs are Cool! is to derive the physical and thermal properties for a large sample of Centaurs and trans-Neptunian objects (TNOs), including resonant, classical, detached and scattered disk objects. We
We present Herschel PACS photometry of 18 Plutinos and determine sizes and albedos for these objects using thermal modeling. We analyze our results for correlations, draw conclusions on the Plutino size distribution, and compare to earlier results. F
The classical Kuiper belt contains objects both from a low-inclination, presumably primordial, distribution and from a high-inclination dynamically excited population. Based on a sample of classical TNOs with observations at thermal wavelengths we de