ترغب بنشر مسار تعليمي؟ اضغط هنا

On the structure and stability of magnetic tower jets

281   0   0.0 ( 0 )
 نشر من قبل Mart\\'in Huarte-Espinosa
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic-energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch (MCL) models, magnetic fields dominate only at scales $lesssim 100$ engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform 3-D ideal MHD AMR simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

قيم البحث

اقرأ أيضاً

Magnetic Towers represent one of two fundamental forms of MHD outflows. Driven by magnetic pressure gradients, these flows have been less well studied than magneto-centrifugally launched jets even though magnetic towers may well be as common. Here we present new results exploring the behavior and evolution of magnetic tower outflows and demonstrate their connection with pulsed power experimental studies and purely hydrodynamic jets which might represent the asymptotic propagation regimes of magneto-centrifugally launched jets. High-resolution AMR MHD simulations (using the AstroBEAR code) provide insights into the underlying physics of magnetic towers and help us constrain models of their propagation. Our simulations have been designed to explore the effects of thermal energy losses and rotation on both tower flows and their hydro counterparts. We find these parameters have significant effects on the stability of magnetic towers, but mild effects on the stability of hydro jets. Current-driven perturbations in the Poynting Flux Dominated (PDF) towers are shown to be amplified in both the cooling and rotating cases. Our studies of the long term evolution of the towers show that the formation of weakly magnetized central jets within the tower are broken up by these instabilities becoming a series of collimated clumps which magnetization properties vary over time. In addition to discussing these results in light of laboratory experiments, we address their relevance to astrophysical observations of young star jets and outflow from highly evolved solar type stars.
Several observations of astrophysical jets show evidence of a structure in the direction perpendicular to the jet axis, leading to the development of spine & sheath models of jets. Most studies focus on a two-component jet consisting of a highly rela tivistic inner jet and a slower - but still relativistic - outer jet surrounded by an unmagnetized environment. These jets are believed to be susceptible to a relativistic Rayleigh-Taylor-type instability, depending on the effective inertia ratio of the two components. We extend previous studies by taking into account the presence of a non-zero toroidal magnetic field. Different values of magnetization are examined, to detect possible differences in the evolution and stability of the jet. We find that the toroidal field, above a certain level of magnetization $sigma$, roughly equal to 0.01, can stabilize the jet against the previously mentioned instabilities and that there is a clear trend in the behaviour of the average Lorentz factor and the effective radius of the jet when we continuously increase the magnetization. The simulations are performed using the relativistic MHD module from the open source, parallel, grid adaptive, MPI-AMRVAC code.
63 - Manel Perucho 2019
A simple look at the steady high-energy Universe reveals a clear correlation with outflows generated around compact objects (winds and jets). In the case of relativistic jets, they are thought to be produced as a consequence of the extraction of rota tional energy from a Kerr black hole (Blandford-Znajek), or from the disc (Blandford-Payne). A fraction of the large energy budget provided by accretion and/or black hole rotational energy is invested into jet formation. After formation, the acceleration and collimation of these outflows allow them to propagate to large distances away from the compact object. The synchrotron cooling times demand that re-acceleration of particles takes place along the jets to explain high-energy and very-high-energy emission from kiloparsec scales. At these scales, jets in radio galaxies are divided in two main morphological/luminosity types, namely, Fanaroff-Riley type I and II (FRI, FRII), the latter being more luminous, collimated and edge-brightened than the former, which show clear hints of decollimation and deceleration. In this contribution, I summarise a set of mechanisms that may contribute to dissipate magnetic and kinetic energy: Magnetohydrodynamic instabilities or jet-obstacle interactions trigger shocks, shearing and mixing, which are plausible scenarios for particle acceleration. I also derive an expression for the expected distance in which the entrainment by stellar winds starts to be relevant, which is applicable to FRI jets. Finally, I discuss the differences in the evolutionary scenarios and the main dissipative mechanisms that take place in extragalactic and microquasar jets.
Antiferromagnets and ferromagnets are archetypes of the two distinct (type-A and type-B) ways of spontaneously breaking a continuous symmetry. Although type-B Nambu--Goldstone modes arise in various systems, the ferromagnet was considered pathologica l due to the stability and symmetry-breaking nature of its exact ground state. However, here we show that symmetry-breaking in ferrimagnets closely resembles the ferromagnet. In particular, there is an extensive ground state degeneracy, there is no Anderson tower of states, and the maximally polarized ground state is thermodynamically stable. Our results are derived analytically for the Lieb--Mattis ferrimagnet and numerically for the Heisenberg ferrimagnet. We argue that these properties are generic for type-B symmetry-broken systems, where the order parameter operator is a symmetry generator.
We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within indi vidual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band ha images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the NST data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m New Solar Telescope (NST) operating at the Big Bear Solar Observatory. The data set also includes NST off-band ha images collected through a Zeiss Lyot filter with a passband of 0.025 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا