ﻻ يوجد ملخص باللغة العربية
We present the first results of a Kepler survey of 41 eclipsing binaries that we undertook to search for third star companions. Such tertiaries will periodically alter the eclipse timings through light travel time and dynamical effects. We discuss the prevalence of starspots and pulsation among these binaries and how these phenomena influence the eclipse times. There is no evidence of short period companions (P < 700 d) among this sample, but we do find evidence for long term timing variations in 14 targets (34%). We argue that this finding is consistent with the presence of tertiary companions among a significant fraction of the targets, especially if many have orbits measured in decades. This result supports the idea that the formation of close binaries involves the deposition of angular momentum into the orbital motion of a third star.
We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASAs Kepler spa
We report eclipse timing variation analyses of 26 compact hierarchical triple stars comprised of an eccentric eclipsing (inner) binary and a relatively close tertiary component found in the {em Kepler} field. We simultaneously fit the primary and sec
We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength dependent variations in the eclipse times of gas-giant planets. A displaced hot-spot introduces an asymmetry in the secondary eclipse light curve that m
The Kwee - van Woerden (KvW) method used for the determination of eclipse minimum times has been a staple in eclipsing binary research for decades, due its simplicity and the independence of external input parameters, which also makes it well-suited
The eclipsing white dwarf plus main-sequence binary NN Serpentis provides one of the most convincing cases for the existence of circumbinary planets around evolved binaries. The exquisite timing precision provided by the deep eclipse of the white dwa