ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Invariant Discord and Non-Markovianity

166   0   0.0 ( 0 )
 نشر من قبل Pinja Haikka
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study non-Markovianity and information flow for qubits experiencing local dephasing with an Ohmic class spectrum. We demonstrate the existence of a temperature-dependent critical value of the Ohmicity parameter s for the onset of non-Markovianity and give a physical interpretation of this phenomenon by linking it to the form of the reservoir spectrum. We demonstrate that this link holds also for more general spectra. We unveil a class of initial states for which discord is forever frozen at a positive value. We connect time invariant discord to non-Markovianity and propose a physical system in which it could be observed.



قيم البحث

اقرأ أيضاً

Quantum resource theories provide a unified framework to quantitatively analyze inherent quantum properties as resources for quantum information processing. So as to investigate the best way for quantifying resources, desirable axioms for resource qu antification have been extensively studied through axiomatic approaches. However, a conventional way of resource quantification by resource measures with such desired axioms may contradict rates of asymptotic transformation between resourceful quantum states due to an approximation in the transformation. In this paper, we establish an alternative axiom, asymptotic consistency of resource measures, and we investigate asymptotically consistent resource measures, which quantify resources without contradicting the rates of the asymptotic resource transformation. We prove that relative entropic measures are consistent with the rates for a broad class of resources, i.e., all convex finite-dimensional resources, e.g., entanglement, coherence, and magic, and even some nonconvex or infinite-dimensional resources such as quantum discord, non-Markovianity, and non-Gaussianity. These results show that consistent resource measures are widely applicable to the quantitative analysis of various inherent quantum-mechanical properties.
We present a thorough investigation of the phenomena of frozen and time-invariant quantum discord for two-qubit systems independently interacting with local reservoirs. Our work takes into account several significant effects present in decoherence mo dels, which have not been yet explored in the context of time-invariant quantum discord, but which in fact must be typically considered in almost all realistic models. Firstly, we study the combined influence of dephasing, dissipation and heating reservoirs at finite temperature. Contrarily to previous claims in the literature, we show the existence of time-invariant discord at high temperature limit in the weak coupling regime, and also examine the effect of thermal photons on the dynamical behaviour of frozen discord. Secondly, we explore the consequences of having initial correlations between the dephasing reservoirs. We demonstrate in detail how the time-invariant discord is modified depending on the relevant system parameters such as the strength of the initial amount of entanglement between the reservoirs.
We investigate the asymptotic dynamics of exact quantum Brownian motion. We find that non-Markovianity can persist in the long-time limit, and that in general the asymptotic behaviour depends strongly on the system-environment coupling and the spectral density of the bath.
We have established a novel method to detect non-Markovian indivisible quantum channels using structural physical approximation. We have shown that this method can be used to detect eternal non -Markovian operations. We have further established that harnessing eternal non-Markovianity, we can device a protocol to detect quantum entanglement.
Using the paradigm of information backflow to characterize a non-Markovian evolution, we introduce so-called precursors of non-Markovianity, i.e. necessary properties that the system and environment state must exhibit at earlier times in order for an ensuing dynamics to be non-Markovian. In particular, we consider a quantitative framework to assess the role that established system-environment correlations together with changes in environmental states play in an emerging non-Markovian dynamics. By defining the relevant contributions in terms of the Bures distance, which is conveniently expressed by means of the quantum state fidelity, these quantities are well defined and easily applicable to a wide range of physical settings. We exemplify this by studying our precursors of non-Markovianity in discrete and continuous variable non-Markovian collision models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا