ﻻ يوجد ملخص باللغة العربية
Special features of the optical-vortex (OV) beams generated by thick holographic elements (HE) with embedded phase singularity are considered theoretically. The volume HE structure is based on the 3D pattern of interference between an OV beam and a standard reference wave with regular wavefront. The incident beam diffraction is described within the framework of a linear single-scattering model in which the volume HE is represented by a set of parallel thin layers with the fork holographic structure. An explicit integral expression is derived for the complex amplitude distribution of the diffracted paraxial beam with OV. The numerical analysis demonstrates that the HE thickness may essentially influence not only selectivity and efficiency of the OV beam generation but also the amplitude and phase profile of the diffracted beam as well as regularities of its propagation. We have studied the generated OV morphology and laws of its evolution; in particular, the possibility of obtaining a circularly symmetric OV beam regardless of the diffraction angle is revealed.
Spatial characteristics of diffracted beams produced by a fork hologram from an incident circular Laguerre-Gaussian beam whose axis differ from the hologram optical axis are studied theoretically. General analytical representations for the complex am
The formulation of the interaction of matter with singular light fields needs special care. In a recent article [Phys.~Rev.~A {bf 91}, 033808 (2015)] we have shown that the Hamiltonian describing the interaction of a twisted light beam having paralle
Based on the Kirchhoff-Fresnel approximation, we numerically analyze spatial characteristics of the light field formed after a circular Laguerre-Gaussian beam with a single-charged optical vortex (OV) passes the transparent screen with a rectilinear
Singular light beams with optical vortices (OV) are often generated by means of thin binary gratings with groove bifurcation (fork holograms) that produce a set of diffracted beams with different OV charges. Usually, only single separate beams are us
Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre- Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams ar