ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbits and Masses in the multiple system LHS 1070

145   0   0.0 ( 0 )
 نشر من قبل Rainer Koehler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the orbits of the triple system LHS1070, with the aim to determine individual masses of its components. Sixteen new relative astrometric positions of the three components in the K band were obtained with NACO at the VLT, Omega CASS at the 3.5m telescope on Calar Alto, and other high-spatial-resolution instruments. We combine them with data from the literature and fit orbit models to the dataset. We derive an improved fit for the orbit of LHS1070B and C around each other, and an estimate for the orbit of B and C around A. The orbits are nearly coplanar, with a misalignment angle of less than 10{deg}. The masses of the three components are M_A = 0.13 - 0.16 Msun, M_B = 0.077+/-0.005 Msun, and M_C = 0.071+/-0.004 Msun. Therefore, LHS1070C is certainly, and LHS1070B probably a brown dwarf. Comparison with theoretical isochrones shows that LHS1070A is either fainter or more massive than expected. One possible explanation would be that it is a binary. However, the close companion reported previously could not be confirmed.



قيم البحث

اقرأ أيضاً

84 - A. Seifahrt 2008
We present a refined orbital solution for the components A, B, and C of the nearby late-M type multiple system LHS 1070. By combining astrometric datapoints from NACO/VLT, CIAO/SUBARU, and PUEO/CFHT, as well as a radial velocity measurement from the newly commissioned near infrared high-resolution spectrograph CRIRES/VLT, we achieve a very precise orbital solution for the B and C components and a first realistic constraint on the much longer orbit of the A-BC system. Both orbits appear to be co-planar. Masses for the B and C components calculated from the new orbital solution (M_(B+C) = 0.157 +/- 0.009 M_sun) are in excellent agreement with theoretical models, but do not match empirical mass-luminosity tracks. The preliminary orbit of the A-BC system reveals no mass excess for the A component, giving no indication for a previously proposed fourth (D) component in LHS 1070.
We aim to improve the orbital elements and determine the individual masses of the components in the triple system TWA 5. Five new relative astrometric positions in the H band were recorded with the adaptive optics system at the Very Large Telescope (VLT). We combine them with data from the literature and a measurement in the Ks band. We derive an improved fit for the orbit of TWA 5Aa-b around each other. Furthermore, we use the third component, TWA 5B, as an astrometric reference to determine the motion of Aa and Ab around their center of mass and compute their mass ratio. We find an orbital period of 6.03+/-0.01 years and a semi-major axis of 63.7+/-0.2 mas (3.2+/-0.1 AU). With the trigonometric distance of 50.1+/-1.8 pc, this yields a system mass of 0.9+/-0.1 Msun, where the error is dominated by the error of the distance. The dynamical mass agrees with the system mass predicted by a number of theoretical models if we assume that TWA5 is at the young end of the age range of the TW Hydrae association. We find a mass ratio of M_Ab / M_Aa = 1.3 +0.6/-0.4, where the less luminous component Ab is more massive. This result is likely to be a consequence of the large uncertainties due to the limited orbital coverage of the observations.
We show individual high resolution spectra of components A, B, and C of the nearby late-M type multiple system LHS 1070. Component A is a mid-M star, B and C are known to have masses at the threshold to brown dwarfs. From our spectra we measure rotat ion velocities and the mean magnetic field for all three components individually. We find magnetic flux on the order of several kilo-Gauss in all components. The rotation velocities of the two late-M objects B and C are similar (vsini = 16km/s), the earlier A component is spinning only at about half that rate. This suggests weakening of net rotational braking at late-M spectral type, and that the lack of slowly rotating late-M and L dwarfs is real. Furthermore, we found that magnetic flux in the B component is about twice as strong as in component C at similar rotation rate. This indicates that rotational braking is not proportional to magnetic field strength in fully convective objects, and that a different field topology is the reason for the weak braking in low mass objects.
New spectroscopic observations of the LBV/WR multiple system HD5980 in the Small Magellanic Cloud are used to address the question of the masses and evolutionary status of the two very luminous stars in the 19.3d eclipsing binary system. Two distinct components of the N V 4944 A line are detected in emission and their radial velocity variations are used to derive masses of 61 and 66 Mo, under the assumption that binary interaction effects on this atomic transition are negligible. We propose that this binary system is the product of quasi-chemically homogeneous evolution with little or no mass transfer. Thus, both of these binary stars may be candidates for gamma-ray burst progenitors or even pair instability supernovae. Analysis of the photospheric absorption lines belonging to the third-light object in the system confirm that it consists of an O-type star in a 96.56d eccentric orbit (e=0.82) around an unseen companion. The 5:1 period ratio and high eccentricities of the two binaries suggest that they may constitute a hierarchical quadruple system.
We investigate the binary star T Tauri South, presenting the orbital parameters of the two components and their individual masses. We combined astrometric positions from the literature with previously unpublished VLT observations. Model fits yield th e orbital elements of T Tau Sa and Sb. We use T Tau N as an astrometric reference to derive an estimate for the mass ratio of Sa and Sb. Although most of the orbital parameters are not well constrained, it is unlikely that T Tau Sb is on a highly elliptical orbit or escaping from the system. The total mass of T Tau S is rather well constrained to 3.0 +0.15/-0.24 M_sun. The mass ratio Sb:Sa is about 0.4, corresponding to individual masses of M_Sa = 2.1+/-0.2 M_sun and M_Sb = 0.8+/-0.1 M_sun. This confirms that the infrared companion in the T Tauri system is a pair of young stars obscured by circumstellar material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا