ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey of proof nets and matrices for substructural logics

147   0   0.0 ( 0 )
 نشر من قبل Sean Fulop
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sean A. Fulop




اسأل ChatGPT حول البحث

This paper is a survey of two kinds of compressed proof schemes, the emph{matrix method} and emph{proof nets}, as applied to a variety of logics ranging along the substructural hierarchy from classical all the way down to the nonassociative Lambek system. A novel treatment of proof nets for the latter is provided. Descriptions of proof nets and matrices are given in a uniform notation based on sequents, so that the properties of the schemes for the various logics can be easily compared.



قيم البحث

اقرأ أيضاً

A theorem of alternatives provides a reduction of validity in a substructural logic to validity in its multiplicative fragment. Notable examples include a theorem of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas in the R-mingle logic RM to the validity of a linear combination of these formulas, and Gordans theorem for solutions of linear systems over the real numbers, that yields an analogous reduction for validity in Abelian logic A. In this paper, general conditions are provided for axiomatic extensions of involutive uninorm logic without additive constants to admit a theorem of alternatives. It is also shown that a theorem of alternatives for a logic can be used to establish (uniform) deductive interpolation and completeness with respect to a class of dense totally ordered residuated lattices.
119 - Dimitris Mostrous 2014
We interpret Linear Logic Proof Nets in a term language based on Solos calculus. The system includes a synchronisation mechanism, obtained by a conservative extension of the logic, that enables to define non-deterministic behaviours and multiparty sessions.
Separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are abstract because they are independent of any particular concrete memory model. Their assertion languages, called proposition al abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et als original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness. We present a theorem prover based on our labelled calculus for these propositional abstract separation logics.
79 - Yann Hamdaoui 2021
In this paper, we show how to interpret a language featuring concurrency, references and replication into proof nets, which correspond to a fragment of differential linear logic. We prove a simulation and adequacy theorem. A key element in our transl ation are routing areas, a family of nets used to implement communication primitives which we define and study in detail.
In this paper we present a cut-free sequent calculus, called SeqS, for some standard conditional logics, namely CK, CK+ID, CK+MP and CK+MP+ID. The calculus uses labels and transition formulas and can be used to prove decidability and space complexity bounds for the respective logics. We also present CondLean, a theorem prover for these logics implementing SeqS calculi written in SICStus Prolog.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا