ﻻ يوجد ملخص باللغة العربية
The $ddto ^3He n$ reaction is considered at the energies between 200 MeV and 520 MeV. The Alt-Grassberger-Sandhas equations are iterated up to the lowest order terms over the nucleon-nucleon t-matrix. The parameterized ${^3He}$ wave function including five components is used. The angular dependence of the differential cross section and energy dependence of tensor analyzing power $T_{20}$ at the zero scattering angle are presented in comparison with the experimental data.
Antiproton scattering off $^3He$ and $^4He$ targets is considered at beam energies below 300 MeV within the Glauber-Sitenko approach, utilizing the $bar N N$ amplitudes of the Julich model as input. A good agreement with available data on differentia
Mechanism of nuclear reactions on 197Au induced by 11B ions at energies above Coulomb barrier was studied by induced-activity method and gamma-spectroscopy. The cross sections of the reaction fragments from 197Au induced by 11B ions were measured at
We present new accurate measurements of the differential cross section $sigma(theta)$ and the proton analyzing power $A_{y}$ for proton-$^{3}$He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low
We provide systematic analysis of the differential cross section of the proton-$^3{rm He}$ elastic scattering at $theta_{rm cm}=180^{circ}$ and at $T_p<700$ MeV. Three mechanisms are discussed: 2N pair exchange in the triplet and singlet spin states,
We use realistic two- and three-nucleon interactions in a hybrid chiral-perturbation-theory calculation of the charge-symmetry-breaking reaction $ddtoalphapi^0$ to show that a cross section of the experimentally measured size can be obtained using LO