ترغب بنشر مسار تعليمي؟ اضغط هنا

The Multi-Armed Bandit, with Constraints

296   0   0.0 ( 0 )
 نشر من قبل Eugene Feinberg
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The early sections of this paper present an analysis of a Markov decision model that is known as the multi-armed bandit under the assumption that the utility function of the decision maker is either linear or exponential. The analysis includes efficient procedures for computing the expected utility associated with the use of a priority policy and for identifying a priority policy that is optimal. The methodology in these sections is novel, building on the use of elementary row operations. In the later sections of this paper, the analysis is adapted to accommodate constraints that link the bandits.



قيم البحث

اقرأ أيضاً

The multi-armed bandit (MAB) is a classical online optimization model for the trade-off between exploration and exploitation. The traditional MAB is concerned with finding the arm that minimizes the mean cost. However, minimizing the mean does not ta ke the risk of the problem into account. We now want to accommodate risk-averse decision makers. In this work, we introduce a coherent risk measure as the criterion to form a risk-averse MAB. In particular, we derive an index-based online sampling framework for the risk-averse MAB. We develop this framework in detail for three specific risk measures, i.e. the conditional value-at-risk, the mean-deviation and the shortfall risk measures. Under each risk measure, the convergence rate for the upper bound on the pseudo regret, defined as the difference between the expectation of the empirical risk based on the observation sequence and the true risk of the optimal arm, is established.
147 - Zhe Yu , Yunjian Xu , Lang Tong 2016
The successful launch of electric vehicles (EVs) depends critically on the availability of convenient and economic charging facilities. The problem of scheduling of large-scale charging of EVs by a service provider is considered. A Markov decision pr ocess model is introduced in which EVs arrive randomly at a charging facility with random demand and completion deadlines. The service provider faces random charging costs, convex non-completion penalties, and a peak power constraint that limits the maximum number of simultaneous activation of EV chargers. Formulated as a restless multi-armed bandit problem, the EV charging problem is shown to be indexable. A closed-form expression of the Whittles index is obtained for the case when the charging costs are constant. The Whittles index policy, however, is not optimal in general. An enhancement of the Whittles index policy based on spatial interchange according to the less laxity and longer processing time principle is presented. The proposed policy outperforms existing charging algorithms, especially when the charging costs are time varying.
We consider a multi-round auction setting motivated by pay-per-click auctions for Internet advertising. In each round the auctioneer selects an advertiser and shows her ad, which is then either clicked or not. An advertiser derives value from clicks; the value of a click is her private information. Initially, neither the auctioneer nor the advertisers have any information about the likelihood of clicks on the advertisements. The auctioneers goal is to design a (dominant strategies) truthful mechanism that (approximately) maximizes the social welfare. If the advertisers bid their true private values, our problem is equivalent to the multi-armed bandit problem, and thus can be viewed as a strategic version of the latter. In particular, for both problems the quality of an algorithm can be characterized by regret, the difference in social welfare between the algorithm and the benchmark which always selects the same best advertisement. We investigate how the design of multi-armed bandit algorithms is affected by the restriction that the resulting mechanism must be truthful. We find that truthful mechanisms have certain strong structural properties -- essentially, they must separate exploration from exploitation -- and they incur much higher regret than the optimal multi-armed bandit algorithms. Moreover, we provide a truthful mechanism which (essentially) matches our lower bound on regret.
61 - Cem Tekin , Eralp Turgay 2017
In this paper, we propose a new multi-objective contextual multi-armed bandit (MAB) problem with two objectives, where one of the objectives dominates the other objective. Unlike single-objective MAB problems in which the learner obtains a random sca lar reward for each arm it selects, in the proposed problem, the learner obtains a random reward vector, where each component of the reward vector corresponds to one of the objectives and the distribution of the reward depends on the context that is provided to the learner at the beginning of each round. We call this problem contextual multi-armed bandit with a dominant objective (CMAB-DO). In CMAB-DO, the goal of the learner is to maximize its total reward in the non-dominant objective while ensuring that it maximizes its total reward in the dominant objective. In this case, the optimal arm given a context is the one that maximizes the expected reward in the non-dominant objective among all arms that maximize the expected reward in the dominant objective. First, we show that the optimal arm lies in the Pareto front. Then, we propose the multi-objective contextual multi-armed bandit algorithm (MOC-MAB), and define two performance measures: the 2-dimensional (2D) regret and the Pareto regret. We show that both the 2D regret and the Pareto regret of MOC-MAB are sublinear in the number of rounds. We also compare the performance of the proposed algorithm with other state-of-the-art methods in synthetic and real-world datasets. The proposed model and the algorithm have a wide range of real-world applications that involve multiple and possibly conflicting objectives ranging from wireless communication to medical diagnosis and recommender systems.
We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret n otion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا