ترغب بنشر مسار تعليمي؟ اضغط هنا

A paradox in bosonic energy computations via semidefinite programming relaxations

487   0   0.0 ( 0 )
 نشر من قبل Stefano Pironio
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the recent hierarchy of semidefinite programming relaxations based on non-commutative polynomial optimization and reduced density matrix variational methods exhibits an interesting paradox when applied to the bosonic case: even though it can be rigorously proven that the hierarchy collapses after the first step, numerical implementations of higher order steps generate a sequence of improving lower bounds that converges to the optimal solution. We analyze this effect and compare it with similar behavior observed in implementations of semidefinite programming relaxations for commutative polynomial minimization. We conclude that the method converges due to the rounding errors occurring during the execution of the numerical program, and show that convergence is lost as soon as computer precision is incremented. We support this conclusion by proving that for any element p of a Weyl algebra which is non-negative in the Schrodinger representation there exists another element p arbitrarily close to p that admits a sum of squares decomposition.



قيم البحث

اقرأ أيضاً

We apply semidefinite programming for designing 1 to 2 symmetric qubit quantum cloners. These are optimized for the average fidelity of their joint output state with respect to a product of multiple originals. We design 1 to 2 quantum bit cloners usi ng the numerical method for finding completely positive maps approximating a nonphysical one optimally. We discuss the properties of the so-designed cloners.
Given all (finite) moments of two measures $mu$ and $lambda$ on $R^n$, we provide a numerical scheme to obtain the Lebesgue decomposition $mu= u+psi$ with $ ulllambda$ and $psiperplambda$. When$ u$ has a density in $L_infty(lambda)$ then we obtain tw o sequences of finite moments vectorsof increasing size (the number of moments) which converge to the moments of $ u$ and $psi$ respectively, as the number of moments increases. Importantly, {it no} `a priori knowledge on the supports of $mu, u$ and $psi$ is required.
We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on $n$-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than $2^{n^c}$, for some constant $c > 0$. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-$O(1)$ sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT.
Quantum information leverages properties of quantum behaviors in order to perform useful tasks such as secure communication and randomness certification. Nevertheless, not much is known about the intricate geometric features of the set quantum behavi ors. In this paper we study the structure of the set of quantum correlators using semidefinite programming. Our main results are (i) a generalization of the analytic description by Tsirelson-Landau-Masanes, (ii) necessary and sufficient conditions for extremality and exposedness, and (iii) an operational interpretation of extremality in the case of two dichotomic measurements, in terms of self-testing. We illustrate the usefulness of our theoretical findings with many examples and extensive computational work.
147 - Troy Lee , Rajat Mittal 2008
The tendency of semidefinite programs to compose perfectly under product has been exploited many times in complexity theory: for example, by Lovasz to determine the Shannon capacity of the pentagon; to show a direct sum theorem for non-deterministic communication complexity and direct product theorems for discrepancy; and in interactive proof systems to show parallel repetition theorems for restricted classes of games. Despite all these examples of product theorems--some going back nearly thirty years--it was only recently that Mittal and Szegedy began to develop a general theory to explain when and why semidefinite programs behave perfectly under product. This theory captured many examples in the literature, but there were also some notable exceptions which it could not explain--namely, an early parallel repetition result of Feige and Lovasz, and a direct product theorem for the discrepancy method of communication complexity by Lee, Shraibman, and Spalek. We extend the theory of Mittal and Szegedy to explain these cases as well. Indeed, to the best of our knowledge, our theory captures all examples of semidefinite product theorems in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا