ﻻ يوجد ملخص باللغة العربية
Anisotropic magnetic properties of a layered kagome-like system Cu3Bi(SeO3)2O2Br have been studied by bulk magnetization and magnetic susceptibility measurements as well as powder and single-crystal neutron diffraction. At T_N = 27.4 K the system develops an alternating antiferromagnetic order of (ab) layers, which individually exhibit canted ferrimagnetic moment arrangement, resulting from the competing ferro- and antiferro-magnetic intralayer exchange interactions. A magnetic field B_C ~ 0.8 T applied along the c axis (perpendicular to the layers) triggers a metamagnetic transition, when every second layer flips, i.e., resulting in a ferrimagnetic structure. Significantly higher fields are required to rotate the ferromagnetic component towards the b axis (~7 T) or towards the a axis (~15 T). The estimates of the exchange coupling constants and features indicative of an XY character of this quasi-2D system are presented.
We explore magnetic behavior of kagome francisites Cu3Bi(SeO3)2O2X (X = Cl and Br) using first-principles calculations. To this end, we propose an approach based on the Hubbard model in the Wannier functions basis constructed on the level of local-de
We performed Raman studies and a dielectric characterization of the pseudo-kagome Cu3Bi(SeO3)2O2X (X = Cl, Br). These compounds share competing nearest-neighbour ferromagnetic exchange and frustrating next-nearest-neighbour antiferromagnetic exchange
The magnetic behavior of the compound, Gd3Ru4Al12, which has been reported to crystallize in a hexagonal structure about two decades ago, had not been investigated in the past literature despite interesting structural features (that is, magnetic laye
Y{0.5}$Ca{0.5}BaCo4O7 contains kagome layers of Co ions, whose spins are strongly coupled according to a Curie-Weiss temperature of -2200 K. At low temperatures, T = 1.2 K, our diffuse neutron scattering study with polarization analysis reveals chara
We report magnetic behavior of two intermetallics-based kagome lattices, Tb3Ru4Al12 and Er3Ru4Al12, crystallizing in the Gd3Ru4Al12-type hexagonal crystal structure, by measurements in the range 1.8-300 K with bulk experimental techniques (ac and dc