ترغب بنشر مسار تعليمي؟ اضغط هنا

The Herschel Multi-tiered Extragalactic Survey: HerMES

85   0   0.0 ( 0 )
 نشر من قبل Seb Oliver
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 mu m), and Herschel-PACS (at 100 and 160 mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

قيم البحث

اقرأ أيضاً

We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 {mu}m by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with r eliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth {tau} = ({ u}/{ u}0)^{beta} where {beta} = +1.8 and { u}0 = c/100 {mu}m. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |z|/(1+z) = 0.16 (< |z| >= 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |z|/(1 + z) = 0.15 (< |z| >= 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z > 3 when compared to ~ 850 {mu}m selected samples.
We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimise s ource blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24 micron source positions. Testing on simulations and real Herschel observations show that this approach gives robust results for even the faintest sources S250~10 mJy. We apply our new technique to HerMES SPIRE observations taken as part of the science demostration phase of Herschel. For our real SPIRE observations we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SussExtractor; Savage & Oliver et al. 2006) by Smith et al. 2010. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However this completeness is heavily dependant on the relative depth of the existing 24 micron catalogues and SPIRE imaging. Using our deepest multi-wavelength dataset in GOODS-N, we estimate that the use of shallow 24 micron in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 micron.
The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to $mu$Jy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ~1 square degree MeerKAT poi nting. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will be carried out by the SKA over a much larger survey volume.
We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5-sigma at 250, 350 and 500 mu in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (~ 56 %) are well fitted with the templates used to fit IRAS, ISO and Spitzer sources, for about half the galaxies two new templates are required: quiescent (cirrus) models with colder (10-20 K) dust, and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5-24 mu data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5-70 mu data. Herschel galaxies detected at 500 mu tend to be those with the very highest dust masses.
We present first results of a study of the submillimetre (rest frame far-infrared) properties of z~3 Lyman Break Galaxies (LBGs) and their lower-redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the G reat Observatories Origins Deep Survey (GOODS-N). We use stacking analysis to determine the properties of LBGs well below the current limit of the survey. Although LBGs are not detected individually, stacking the infrared luminous LBGs (those detected with Spitzer at 24 microns yields a statistically significant submm detection with mean flux <S_{250}>= 5.9+/-1.4 mJy confirming the power of SPIRE in detecting UV-selected high-redshift galaxies at submillimetre wavelengths. In comparison, the Spitzer 24 microns detected BX/BM galaxies appear fainter with a stacked value of <S_{250}> = 2.7 +/-0.8 mJy. By fitting the Spectral Energy Distributions (SEDs) we derive median infrared luminosities, L_{IR}, of 2.8x10^{12} Lsun and 1.5x10^{11} Lsun for z~3 LBGs and BX/BMs, respectively. We find that $L_{IR} estimates derived from present measurements are in good agreement with those based on UV data for z~2 BX/BM galaxies, unlike the case for z~3 infrared luminous LBGs where the UV underestimates the true $L_{IR}. Although sample selection effects may influence this result we suggest that differences in physical properties (such as morphologies, dust distribution and extent of star-forming regions) between z ~3 LBGs and z~2 BX/BMs may also play a significant role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا