ترغب بنشر مسار تعليمي؟ اضغط هنا

A diameter--bandwidth product limitation of isolated-object cloaking

27   0   0.0 ( 0 )
 نشر من قبل Hila Hashemi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that cloaking of isolated objects is subject to a diameter-bandwidth product limitation: as the size of the object increases, the bandwidth of good (small cross-section) cloaking decreases inversely with the diameter, as a consequence of causality constraints even for perfect fabrication and materials with negligible absorption. This generalizes a previous result that perfect cloaking of isolated objects over a nonzero bandwidth violates causality. Furthermore, we demonstrate broader causality-based scaling limitations on any bandwidth-averaged cloaking cross-section, using complex analysis and the optical theorem to transform the frequency-averaged problem into a single scattering problem with transformed materials.

قيم البحث

اقرأ أيضاً

65 - T. Ochiai , J. C. Nacher 2012
Recently, researchers have proposed several carpet cloaking designs that are able to hide a real object under a bump in a way that it is perceived as a flat ground plane. Here, we present a method to design two-dimensional isotropic carpet cloaking d evices using Laplace transformation. We show that each functional form of a Laplace transformation corresponds to a different carpet cloaking design. Therefore, our approach allows us to systematically design a rich variety of cloaking devices. Our analysis includes several examples containing different bump geometries that illustrate the proposed methodology.
We show that it is possible to design an invisible wavelength-sized metal-dielectric metamaterial object without evoking cloaking. Our approach is an extension of the neutral inclusion concept by Zhou and Hu [Phys.Rev.E 74, 026607 (2006)] to Mie scat terers. We demonstrate that an increase of metal fraction in the metamaterial leads to a transition from dielectric-like to metal-like scattering, which proceeds through invisibility or optical neutrality of the scatterer. Formally this is due to cancellation of multiple scattering orders, similarly to plasmonic cloaking introduced by Alu and Engheta [Phys.Rev.E 72, 016623 (2005)], but without introduction of the separation of the scatterer into cloak and hidden regions.
260 - Jensen Li , J. B. Pendry 2008
A new type of cloak is discussed: one that gives all cloaked objects the appearance of a flat conducting sheet. It has the advantage that none of the parameters of the cloak is singular and can in fact be made isotropic. It makes broadband cloaking in the optical frequencies one step closer.
Breaking the diffraction limit is always an appealing topic due to the urge for a better imaging resolution in almost all areas. As an effective solution, the superlens based on the plasmonic effect can resonantly amplify evanescent waves, and achiev e subwavelength resolution. However, the natural plasmonic materials, within their limited choices, usually have inherit high losses and are only available from the infrared to visible wavelengths. In this work, we have theoretically and experimentally demonstrated that the arbitrary materials, even air, can be used to enhance evanescent waves and build low loss superlens with at the desired frequency. The operating mechanisms reside in the dispersion-induced effective plasmons in a bounded waveguide structure. Based on this, we constructed the hyperbolic metamaterials and experimentally verified its validity in the microwave range by the directional propagation and imaging with a resolution of 0.087 wavelength. We have also demonstrated that the imaging potential can be extended to terahertz and infrared bands. The proposed method can break the conventional barriers of plasmon-based lenses and bring new possibilities to the field of superresolution imaging from microwave to infrared wavelengths.
Photodetectors are key optoelectronic building blocks performing the essential optical-to-electrical signal conversion, and unlike solar cells, operate at a specific wavelength and at high signal or sensory speeds. Towards achieving high detector per formance, device physics, however, places a fundamental limit of the achievable detector sensitivity, such as responsivity and gain, when simultaneously aimed to increasing the detectors temporal response, speed, known as the gain-bandwidth product (GBP). While detectors GBP has been increasing in recent years, the average GBP is still relatively modest (~10^6-10^7 Hz-A/W). Here we discuss photodetector performance limits and opportunities based on arguments from scaling length theory relating photocarrier channel length, mobility, electrical resistance with optical waveguide mode constrains. We show that short-channel detectors are synergistic with slot-waveguide approaches, and when combined, offer a high-degree of detector design synergy especially for the class of nanometer-thin materials. Indeed, we find that two dimensional material-based detectors are not limited by their low mobility and can, in principle, allow for 100 GHz fast response rates. However, contact resistance is still a challenge for such thin materials, a research topic that is still not addressed yet. An interim solution is to utilize heterojunction approaches for functionality separation. Nonetheless, atomistically- and nanometer-thin materials used in such next-generation scaling length theory based detectors also demand high material quality and monolithic integration strategies into photonic circuits including foundry-near processes. As it stands, this letter aims to guide the community if achieving the next generation photodetectors aiming for a performance target of GBP = 10^12 Hz-A/W.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا