ﻻ يوجد ملخص باللغة العربية
We study the anisotropic effect of the Coulomb interaction on a 1/3-filling fractional quantum Hall system by using an exact diagonalization method on small systems in torus geometry. For weak anisotropy the system remains to be an incompressible quantum liquid, although anisotropy manifests itself in density correlation functions and excitation spectra. When the strength of anisotropy increases, we find the system develops a Hall-smectic-like phase with a one-dimensional charge density wave order and is unstable towards the one-dimensional crystal in the strong anisotropy limit. In all three phases of the Laughlin liquid, Hall-smectic-like, and crystal phases the ground state of the anisotropic Coulomb system can be well described by a family of model wave functions generated by an anisotropic projection Hamiltonian. We discuss the relevance of the results to the geometrical description of fractional quantum Hall states proposed by Haldane [ Phys. Rev. Lett. 107 116801 (2011)].
We study a two-dimensional electron system where the electrons occupy two conduction band valleys with anisotropic Fermi contours and strain-tunable occupation. We observe persistent quantum Hall states at filling factors $ u = 1/3$ and 5/3 even at z
Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians,
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fra
At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarm
We study transport properties of a charge qubit coupling two chiral Luttinger liquids, realized by two antidots placed between the edges of an integer $ u=1$ or fractional $ u=1/3$ quantum Hall bar. We show that in the limit of a large capacitive cou