ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical investigations of traveling singular sources problems via moving mesh method

114   0   0.0 ( 0 )
 نشر من قبل Zhicheng Hu
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the numerical solution of traveling singular sources problems. In such problems, a big challenge is the sources move with different speeds, which are described by some ordinary differential equations. A predictor-corrector algorithm is presented to simulate the position of singular sources. Then a moving mesh method in conjunction with domain decomposition is derived for the underlying PDE. According to the positions of the sources, the whole domain is splitted into several subdomains, where moving mesh equations are solved respectively. On the resulting mesh, the computation of jump $[dot{u}]$ is avoided and the discretization of the underlying PDE is reduced into only two cases. In addition, the new method has a desired second-order of the spatial convergence. Numerical examples are presented to illustrate the convergence rates and the efficiency of the method. Blow-up phenomenon is also investigated for various motions of the sources.



قيم البحث

اقرأ أيضاً

A Lagrangian-type numerical scheme called the comoving mesh method or CMM is developed for numerically solving certain classes of moving boundary problems which include, for example, the classical Hele-Shaw flow problem and the well-known mean curvat ure flow problem. This finite element scheme exploits the idea that the normal velocity field of the moving boundary can be extended throughout the entire domain of definition of the problem using, for instance, the Laplace operator. Then, the boundary as well as the finite element mesh of the domain are easily updated at every time step by moving the nodal points along this velocity field. The feasibility of the method, highlighting its practicality, is illustrated through various numerical experiments. Also, in order to examine the accuracy of the proposed scheme, the experimental order of convergences between the numerical and manufactured solutions for these examples are also calculated.
Numerical and analytical methods are developed for the investigation of contact sets in electrostatic-elastic deflections modeling micro-electro mechanical systems. The model for the membrane deflection is a fourth-order semi-linear partial different ial equation and the contact events occur in this system as finite time singularities. Primary research interest is in the dependence of the contact set on model parameters and the geometry of the domain. An adaptive numerical strategy is developed based on a moving mesh partial differential equation to dynamically relocate a fixed number of mesh points to increase density where the solution has fine scale detail, particularly in the vicinity of forming singularities. To complement this computational tool, a singular perturbation analysis is used to develop a geometric theory for predicting the possible contact sets. The validity of these two approaches are demonstrated with a variety of test cases.
116 - Dongmi Luo , Weizhang Huang , 2018
A moving mesh discontinuous Galerkin method is presented for the numerical solution of hyperbolic conservation laws. The method is a combination of the discontinuous Galerkin method and the mesh movement strategy which is based on the moving mesh par tial differential equation approach and moves the mesh continuously in time and orderly in space. It discretizes hyperbolic conservation laws on moving meshes in the quasi-Lagrangian fashion with which the mesh movement is treated continuously and no interpolation is needed for physical variables from the old mesh to the new one. Two convection terms are induced by the mesh movement and their discretization is incorporated naturally in the DG formulation. Numerical results for a selection of one- and two-dimensional scalar and system conservation laws are presented. It is shown that the moving mesh DG method achieves the theoretically predicted order of convergence for problems with smooth solutions and is able to capture shocks and concentrate mesh points in non-smooth regions. Its advantage over uniform meshes and its insensitiveness to mesh smoothness are also demonstrated.
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, space and angu lar variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. Its numerical solution is studied in this paper using an adaptive moving mesh discontinuous Galerkin method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Its mesh adaptation ability, accuracy, and efficiency are demonstrated in a selection of one- and two-dimensional numerical examples.
77 - Yikan Liu 2020
This article is concerned with the derivation of numerical reconstruction schemes for the inverse moving source problem on determining source profiles in (time-fractional) evolution equations. As a continuation of the theoretical result on the unique ness, we adopt a minimization procedure with regularization to construct iterative thresholding schemes for the reduced backward problems on recovering one or two unknown initial value(s). Moreover, an elliptic approach is proposed to solve a convection equation in the case of two profiles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا