ﻻ يوجد ملخص باللغة العربية
The lattice dynamics of the $rm YMnO_3$ magneto-electric compound has been investigated using density functional calculations, both in the ferroelectric and the paraelectric phases. The coherence between the computed and experimental data is very good in the low temperature phase. Using group theory, modes continuity and our calculations we were able to show that the phonons modes observed by Raman scattering at 1200K are only compatible with the ferroelectric $P6_{3} cm$ space group, thus supporting the idea of a ferroelectric to paraelectric phase transition at higher temperature. Finally we proposed a candidate for the phonon part of the observed electro-magnon. This mode, inactive both in Raman scattering and in Infra-Red, was shown to strongly couple to the Mn-Mn magnetic interactions.
We propose a design scheme for potential electrides derived from conventional materials. Starting with rare-earth-based ternary halides, we exclude halogens and perform global structure optimization to obtain thermodynamically stable or metastable ph
Structural phase transitions described by Mexican hat potentials should in principle exhibit aspects of Higgs and Goldstone physics. Here, we investigate the relationship between the phonons that soften at such structural phase transitions and the Hi
We demonstrate how the quantum paraelectric ground state of SrTiO$_3$ can be accessed via a microscopic $ab~initio$ approach based on density functional theory. At low temperature the quantum fluctuations are strong enough to stabilize the paraelectr
First-principles calculations combining density functional theory and many-body perturbation theory can provide microscopic insight into the dynamics of electrons and phonons in materials. We review this theoretical and computational framework, focus
The behaviour of the cross-sectional polarization field is explored for thin nanowires of barium titanate from first-principles calculations. Topological defects of different winding numbers have been obtained, beyond the known textures in ferroelect