ﻻ يوجد ملخص باللغة العربية
We study properties of normal, superconducting (SC) and CDW states for an attractive Hubbard model on the square lattice, using a variational Monte Carlo method. In trial wave functions, we introduce an interspinon binding factor, indispensable to induce a spin-gap transition in the normal state, in addition to the onsite attractive and intersite repulsive factors. It is found that, in the normal state, as the interaction strength $|U|/t$ increases, a first-order spin-gap transition arises at $|U_{rm c}|sim W$ ($W$: band width) from a Fermi liquid to a spin-gapped state, which is conductive through hopping of doublons. In the SC state, we confirm by analysis of various quantities that the mechanism of superconductivity undergoes a smooth crossover at around $|U_{ma{co}}|sim |U_{rm c}|$ from a BCS type to a Bose-Einstein condensation (BEC) type, as $|U|/t$ increases. For $|U|<|U_{ma{co}}|$, quantities such as the condensation energy, a SC correlation function and the condensate fraction of onsite pairs exhibit behavior of $sim exp(-t/|U|)$, as expected from the BCS theory. For $|U|>|U_{ma{co}}|$, quantities such as the energy gain in the SC transition and superfluid stiffness, which is related to the cost of phase coherence, behave as $sim t^2/|U|propto T_{rm c}$, as expected in a bosonic scheme. In this regime, the SC transition is induced by a gain in kinetic energy, in contrast with the BCS theory. We refer to the relevance to the pseudogap in cuprate superconductors.
Motivated by the recent realization of the Haldane model in shaking optical lattice, we investigate the effects of attractive interaction and BEC-BCS crossover in this model at and away from half filling. We show that, contrary to the usual s-wave BE
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-inte
We probe the superconducting gap in the zero temperature ground state of an attractively interacting spin-imbalanced two-dimensional Fermi gas with Diffusion Monte Carlo. A condensate fraction at nonzero pair momentum evidences a spatially non-unifor
We have performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). Here we present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the f
The Quantum Monte Carlo method for spin 1/2 fermions at finite temperature is formulated for dilute systems with an s-wave interaction. The motivation and the formalism are discussed along with descriptions of the algorithm and various numerical issu