ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced Bent Crystal Collimation Studies at the Tevatron (T-980)

94   0   0.0 ( 0 )
 نشر من قبل Nikolai Mokhov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The T-980 bent crystal collimation experiment at the Tevatron has recently acquired substantial enhancements. First, two new crystals - a 16-strip one manufactured and characterized by the INFN Ferrara group and a quasi-mosaic crystal manufactured and characterized by the PNPI group. Second, a two plane telescope with 3 high-resolution pixel detectors per plane along with corresponding mechanics, electronics, control and software has been manufactured, tested and installed in the E0 crystal region. The purpose of the pixel telescope is to measure and image channeled (CH), volume-reflected (VR) and multiple volume-reflected (MVR) beam profiles produced by bent crystals. Third, an ORIGIN-based system has been developed for thorough analysis of experimental and simulation data. Results of analysis are presented for different types of crystals used from 2005 to present for channeling and volume reflection including pioneering tests of two-plane crystal collimation at the collider, all in comparison with detailed simulations.



قيم البحث

اقرأ أيضاً

The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various cry stal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding beam collimation simultaneously using crystals in both the vertical and horizontal plane has been made in the regime with horizontally channeled and vertically volume-reflected beams. Planning is underway for significant hardware improvements during the FY10 summer shutdown and for dedicated studies during the final year of Tevatron operation and also for a post-collider beam physics running period.
The Large Hadron Collider (LHC) uses a multi-stage collimator system to absorb the growing halo of circulating beams to protect and ensure reliable operation of superconducting magnets. A similar system is planned for the Future Circular Collider (FC C). In anticipation of the LHC operation with high luminosity, research is being conducted to improve the collimation system. Studies have shown that one of the solutions to improve beam collimation is to use channeling in a short curved crystal, which acts as a primary collimator, throwing particles deep into the secondary collimator by channeling. This system is very sensitive to the angular position of the crystal and possible vibrations of different nature. In this paper, we propose a different approach to crystal collimation based on the volume reflection of particles from curved crystallographic planes in a sequence of crystals. The positive qualities of this scheme are substantiated and a multi-strip crystal device capable of implementing it is proposed.
56 - V.M. Biryukov 2006
We present theory for coherent effects observed in crystal collimation experiments that is in good quantitative agreement with RHIC and Tevatron data. We show that coherent scattering in a bent crystal strongly amplifies beam diffusion, with an effec tive radiation length shortened by orders of magnitude compared to amorphous material. This coherent scattering could replace the traditional amorphous scattering in accelerator collimation systems. We predict that crystal collimation for negative particles can be as strong as for positives, unlike with channeling effect. This opens a principle way for efficient crystal steering of negative particles at accelerators. It can be demonstrated with antiproton crystal collimation at the Tevatron. We predict strong effects for the upcoming Tevatron experiment, for protons and antiprotons.
New crystal technique - array of bent strips and a fan-type reflector, based on thin straight plates - have been used for research of extraction and collimation a circulating beam in the U-70 accelerator at the energy 50 GeV and 1.3 GeV. It is shown, that new devices can effectively steer a beam in a wide energy range. For protons with energy 50 GeV efficiency of extraction and collimation about 90 % has been achieved which is record for this method. Reduction of particle losses in 2-3 times was observed also in accelerator at application of different crystals in comparison with the usual one-stage collimation scheme of beam with a steel absorber.
51 - V.M. Biryukov 2006
The studies of crystal collimation in the experiments at Relativistic Heavy Ion Collider and Tevatron and in computer simulations reveal strong coherent effects observed in a very broad angular range. Our theory explains the effects by coherent scatt ering on the potential of bent crystal atomic planes, which amplifies beam diffusion in accelerator by orders of magnitude. This coherent scattering in bent crystal is being studied in a CERN SPS experiment. We present Monte Carlo predictions for the SPS and Tevatron experiments, and show the implications of the coherent scattering effect for crystal collimation in the Large Hadron Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا