ﻻ يوجد ملخص باللغة العربية
We build, from the collection of all groups of unitriangular matrices, Hopf monoids in Joyals category of species. Such structure is carried by the collection of class function spaces on those groups, and also by the collection of superclass function spaces, in the sense of Diaconis and Isaacs. Superclasses of unitriangular matrices admit a simple description from which we deduce a combinatorial model for the Hopf monoid of superclass functions, in terms of the Hadamard product of the Hopf monoids of linear orders and of set partitions. This implies a recent result relating the Hopf algebra of superclass functions on unitriangular matrices to symmetric functions in noncommuting variables. We determine the algebraic structure of the Hopf monoid: it is a free monoid in species, with the canonical Hopf structure. As an application, we derive certain estimates on the number of conjugacy classes of unitriangular matrices.
We study Cohen-Macaulay Hopf monoids in the category of species. The goal is to apply techniques from topological combinatorics to the study of polynomial invariants arising from combinatorial Hopf algebras. Given a polynomial invariant arising from
We establish a criterion for a semigroup identity to hold in the monoid of $n times n$ upper unitriangular matrices with entries in a commutative semiring $S$. This criterion is combinatorial modulo the arithmetic of the multiplicative identity eleme
We study Artin-Tits braid groups $mathbb{B}_W$ of type ADE via the action of $mathbb{B}_W$ on the homotopy category $mathcal{K}$ of graded projective zigzag modules (which categorifies the action of the Weyl group $W$ on the root lattice). Following
In arXiv:1709.07504 Ardila and Aguiar give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We g
In arXiv:1709.07504 Aguiar and Ardila give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We g