ﻻ يوجد ملخص باللغة العربية
We investigate the response of a dense monodisperse quasi-two-dimensional (q2D) colloid suspension when a particle is dragged by a constant velocity optical trap. Consistent with microrheological studies of other geometries, the perturbation induces a leading density wave and trailing wake, and we use Stokesian Dynamics (SD) simulations to parse direct colloid-colloid and hydrodynamic interactions. We go on to analyze the underlying individual particle-particle collisions in the experimental images. The displacements of particles form chains reminiscent of stress propagation in sheared granular materials. From these data, we can reconstruct steady-state dipolar flow patterns that were predicted for dilute suspensions and previously observed in granular analogs to our system. The decay of this field differs, however, from point Stokeslet calculations, indicating that the finite size of the colloids is important. Moreover, there is a pronounced angular dependence that corresponds to the surrounding colloid structure, which evolves in response to the perturbation. Put together, our results show that the response of the complex fluid is highly anisotropic owing to the fact that the effects of the perturbation propagate through the structured medium via chains of colloid-colloid collisions.
Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood.
In this paper, we investigate the collective synchronization of system of coupled oscillators on Barab{a}si-Albert scale-free network. We propose an approach of structural perturbations aiming at those nodes with maximal betweenness. This method can
We report the results of experimental studies of the short time-long wavelength behavior of collective particle displacements in quasi-one-dimensional and quasi-two-dimensional colloid suspensions. Our results are represented by the behavior of the h
We identify a structural one-body force field that sustains spatial inhomogeneities in nonequilibrium overdamped Brownian many-body systems. The structural force is perpendicular to the local flow direction, it is free of viscous dissipation, it is m
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction and selective targeting in directed drug delivery. Such sharp differentiat