ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermo-optical response of photonic crystal cavities operating in the visible

115   0   0.0 ( 0 )
 نشر من قبل Janik Wolters
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study thermo-optical effects in gallium phosphite photonic crystal cavities in the visible. By measuring the shift of narrow resonances we derive the temperature dependency of the local refractive index of gallium phosphide in attoliter volumina over a temperature range between 5 K and 300 K at a wavelength of about 605 nm. Additionally, the potential of photonic crystal cavities for thermo-optical switching of visible light is investigated. As an example we demonstrate thermo-optical switching with 13 dB contrast.


قيم البحث

اقرأ أيضاً

We describe the design, fabrication, and spectroscopy of coupled, high Quality (Q) factor silicon nanobeam photonic crystal cavities. We show that the single nanobeam cavity modes are coupled into even and odd superposition modes, and we simulate the frequency and Q factor as a function of nanobeam spacing, demonstrating that a differential wavelength shift of 70 nm between the two modes is possible while maintaining Q factors greater than 10^6. For both on-substrate and free-standing nanobeams, we experimentally monitor the response of the even mode as the gap is varied, and measure Q factors as high as 200,000.
We measure the dynamics of the thermo-optical nonlinearity of both a mode-gap nanocavity and a delocalized mode in a Ga$_{mathrm{0.51}}$In$_{mathrm{0.49}}$P photonic crystal membrane. We model these results in terms of heat transport and thermo-optic al response in the material. By step-modulating the optical input power we push the nonlinear resonance to jump between stable branches of its response curve, causing bistable switching. An overshoot of the intensity followed by a relaxation tail is observed upon bistable switching. In this way, the thermal relaxation of both the localized resonance and the delocalized resonance is measured. Significant difference in decay time is observed and related to the optical mode profile of the resonance. We reproduce the observed transient behavior with our thermo-optical model, implementing a non-instantaneous nonlinearity, and taking into account the optical mode profile of the resonance, as experimentally measured.
119 - Kelley Rivoire , Andrei Faraon , 2008
Photonic crystal nanocavities at visible wavelengths are fabricated in a high refractive index (n>3.2) gallium phosphide membrane. The cavities are probed via a cross-polarized reflectivity measurement and show resonances at wavelengths as low as 645 nm at room temperature, with quality factors between 500 and 1700 for modes with volumes 0.7(lambda/n)^3. These structures could be employed for submicron scale optoelectronic devices in the visible, and for coupling to novel emitters with resonances in the visible such as nitrogen vacancy centers, and bio- and organic molecules.
Wavelength-scale, high Q-factor photonic crystal cavities have emerged as a platform of choice for on-chip manipulation of optical signals, with applications ranging from low-power optical signal processing and cavity quantum electrodynamics, to bioc hemical sensing. Many of these applications, however, are limited by the fabrication tolerances and the inability to precisely control the resonant wavelength of fabricated structures. Various techniques for post-fabrication wavelength trimming and dynamical wavelength control -- using, for example, thermal effects, free carrier injection, low temperature gas condensation, and immersion in fluids -- have been explored. However, these methods are often limited by small tuning ranges, high power consumption, or the inability to tune continuously or reversibly. In this letter, by combining nano-electro-mechanical systems (NEMS) and nanophotonics, we demonstrate reconfigurable photonic crystal nanobeam cavities that can be continuously and dynamically tuned using electrostatic forces. A tuning of ~10 nm has been demonstrated with less than 6 V of external bias and negligible steady-state power consumption.
We investigate the nonlinear optical response of suspended 1D photonic crystal nanocavities fabricated on a silicon nitride chip. Strong thermo-optical nonlinearities are demonstrated for input powers as low as $2,mutext{W}$ and a self-sustained puls ing regime is shown to emerge with periodicity of several seconds. As the input power and laser wavelength are varied the temporal patterns change in period, duty cycle and shape. This dynamics is attributed to the multiple timescale competition between thermo-optical and thermo-optomechanical effects and closely resembles the relaxation oscillations states found in mathematical models of neuronal activity. We introduce a simplified model that reproduces all the experimental observations and allows us to explain them in terms of the properties of a 1D critical manifold which governs the slow evolution of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا