ﻻ يوجد ملخص باللغة العربية
We consider computations of a Turing machine under noise that causes consecutive violations of the machines transition function. Given a constant upper bound B on the size of bursts of faults, we construct a Turing machine M(B) subject to faults that can simulate any fault-free machine under the condition that bursts are not closer to each other than V for an appropriate V = O(B^2).
A Turmit is a Turing machine that works over a two-dimensional grid, that is, an agent that moves, reads and writes symbols over the cells of the grid. Its state is an arrow and, depending on the symbol that it reads, it turns to the left or to the r
We describe the Turing Machine, list some of its many influences on the theory of computation and complexity of computations, and illustrate its importance.
We report a new limitation on the ability of physical systems to perform computation -- one that is based on generalizing the notion of memory, or storage space, available to the system to perform the computation. Roughly, we define memory as the max
We prove that a sufficiently strong parallel repetition theorem for a special case of multiplayer (multiprover) games implies super-linear lower bounds for multi-tape Turing machines with advice. To the best of our knowledge, this is the first connec