ترغب بنشر مسار تعليمي؟ اضغط هنا

Stamp transferred suspended graphene mechanical resonators for radio-frequency electrical readout

186   0   0.0 ( 0 )
 نشر من قبل Xuefeng Song
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio-frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f=5-6 GHz producing modulation sidebands at f +/- fm. A mechanical resonance frequency up to fm=178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples, and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of DC bias voltage Vdc indicate that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large Vdc.



قيم البحث

اقرأ أيضاً

We report radio frequency (rf) electrical readout of graphene mechanical resonators. The mechanical motion is actuated and detected directly by using a vector network analyzer, employing a local gate to minimize parasitic capacitance. A resist-free d oubly clamped sample with resonant frequency ~ 34 MHz, quality factor ~ 10000 at 77 K, and signal-to-background ratio of over 20 dB is demonstrated. In addition to being over two orders of magnitude faster than the electrical rf mixing method, this technique paves the way for use of graphene in rf devices such as filters and oscillators.
The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors.
The transport properties of a suspended carbon nanotube probed by means of a STM tip are investigated. A microscopic theory of the coupling between electrons and mechanical vibrations is developed. It predicts a position-dependent coupling constant, sizeable only in the region where the vibron is located. This fact has profound consequences on the transport properties, which allow to extract information on the location and size of the vibrating portions of the nanotube.
283 - A. Voje , J. M. Kinaret , 2011
We study the quantum dynamics of a symmetric nanomechanical graphene resonator with degenerate flexural modes. Applying voltage pulses to two back gates, flexural vibrations of the membrane can be selectively actuated and manipulated. For graphene, n onlinear response becomes important already for amplitudes comparable to the magnitude of zero point fluctuations. We show, using analytical and numerical methods, that this allows for creation of cat-like superpositions of coherent states as well as superpositions of coherent cat-like non-product states.
We present a fabrication process for high quality suspended and double gated trilayer graphene devices. The electrical transport measurements in these transistors reveal a high charge carrier mobility (higher than 20000 cm^2/Vs) and ballistic electri c transport on a scale larger than 200nm. We report a particularly large on/off ratio of the current in ABC-stacked trilayers, up to 250 for an average electric displacement of -0.08 V/nm, compatible with an electric field induced energy gap. The high quality of these devices is also demonstrated by the appearance of quantum Hall plateaus at magnetic fields as low as 500mT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا