ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum Pressure Measurements using a Magneto-Optical Trap

99   0   0.0 ( 0 )
 نشر من قبل Charles Sackett
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The loading dynamics of an alkali-atom magneto-optical trap can be used as a reliable measure of vacuum pressure, with loading time T indicating a pressure less than or equal to [2x10^(-8) Torr s]/T. This relation is accurate to approximately a factor of two over wide variations in trap parameters, background gas composition, or trapped alkali species. The low-pressure limit of the method does depend on the trap parameters, but typically extends to the 10^(-10) Torr range.



قيم البحث

اقرأ أيضاً

We demonstrate a Magneto-Optical Trap (MOT) configuration which employs optical forces due to light scattering between electronically excited states of the atom. With the standard MOT laser beams propagating along the {it x}- and {it y}- directions, the laser beams along the {it z}-direction are at a different wavelength that couples two sets of {it excited} states. We demonstrate efficient cooling and trapping of cesium atoms in a vapor cell and sub-Doppler cooling on both the red and blue sides of the two-photon resonance. The technique demonstrated in this work may have applications in background-free detection of trapped atoms, and in assisting laser-cooling and trapping of certain atomic species that require cooling lasers at inconvenient wavelengths.
We propose and demonstrate the laser cooling and trapping of Rydberg-dressed Sr atoms. By off-resonantly coupling the excited state of a narrow (7 kHz) cooling transition to a high-lying Rydberg state, we transfer Rydberg properties such as enhanced electric polarizability to a stable magneto-optical trap operating at $< 1 mu K$. By increasing the density to $1 times 10^{12} rm{cm^{-3}}$, we show that it is possible to reach a regime where the long-range interaction between Rydberg-dressed atoms becomes comparable to the kinetic energy, opening a route to combining laser cooling with tunable long-range interactions.
A large number of $^{87}$Rb atoms (up to $1.5 times 10^{11}$) is confined and cooled to $sim 200~mu$K in a magneto-optical trap. The resulting cloud of atoms exhibits spatio-temporal instabilities leading to chaotic behaviour resembling a turbulent f low of fluid. We apply the methods of the turbulence theory based on the structure functions analysis to classify and quantify the different degrees of excitation of turbulence, including its scaling and morphological properties in the moving cloud images.
We report the first observation of a non-dipole transition in an ultra-cold atomic vapor. We excite the 3P-4P electric quadrupole (E2) transition in $^{23}$Na confined in a Magneto-Optical Trap(MOT), and demonstrate its application to high-resolution spectroscopy by making the first measurement of the hyperfine structure of the 4P$_{1/2}$ level and extracting the magnetic dipole constant A $=$ 30.6 $pm$ 0.1 MHz. We use cw OODR (Optical-Optical Double Resonance) accompanied by photoinization to probe the transition.
We present the properties and advantages of a new magneto-optical trap (MOT) where blue-detuned light drives `type-II transitions that have dark ground states. Using $^{87}$Rb, we reach a radiation-pressure-limited density exceeding $10^{11}$cm$^{-3} $ and a temperature below 30$mu$K. The phase-space density is higher than in normal atomic MOTs, and a million times higher than comparable red-detuned type-II MOTs, making it particularly attractive for molecular MOTs which rely on type-II transitions. The loss of atoms from the trap is dominated by ultracold collisions between Rb atoms. For typical trapping conditions, we measure a loss rate of $1.8(4)times10^{-10}$cm$^{3}$s$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا