ترغب بنشر مسار تعليمي؟ اضغط هنا

Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

152   0   0.0 ( 0 )
 نشر من قبل Marco Cortesi Mr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).



قيم البحث

اقرأ أيضاً

127 - M. Cortesi , R. Alon , R. Chechik 2007
We present the results of our recent studies on a Thick Gas Electron Multiplier (THGEM)-based imaging detector prototype. It consists of two 100x100 mm^2 THGEM electrodes in cascade, coupled to a resistive anode. The event location is recorded with a 2D double-sided readout electrode equipped with discrete delay-lines and dedicated electronics. The THGEM electrodes, produced by standard printed-circuit board and mechanical drilling techniques, a 0.4 mm thick with 0.5 mm diameter holes spaced by 1 mm. Localization resolutions of about 0.7 mm (FWHM) were measured with soft x-rays, in a detector operated with atmospheric-pressure Ar/CH4; good linearity and homogeneity were achieved. We describe the imaging-detector layout, the resistive-anode 2D readout system and the imaging properties. The THGEM has numerous potential applications that require large-area imaging detectors, with high-rate capability, single-electron sensitivity and moderate (sub-mm) localization resolution.
The China Spallation Neutron Source (CSNS) operates in pulsed mode and has a high neutron flux. This provides opportunities for energy resolved neutron imaging by using the TOF (Time Of Flight) approach. An Energy resolved neutron imaging instrument (ERNI) is being built at the CSNS but significant challenges for the detector persist because it simultaneously requires a spatial resolution of less than 100 {mu}m, as well as a microsecond-scale timing resolution. This study constructs a prototype of an energy resolved neutron imaging detector based on the fast optical camera, TPX3Cam coupled with an image intensifier. To evaluate its performance, a series of proof of principle experiments were performed in the BL20 at the CSNS to measure the spatial resolution and the neutron wavelength spectrum, and perform neutron imaging with sliced wavelengths and Bragg edge imaging of the steel sample. A spatial resolution of 57 {mu}m was obtained for neutron imaging by using the centroiding algorithm, the timing resolution was on the microsecond scale and the measured wavelength spectrum was identical to that measured by a beam monitor. In addition, any wavelengths can be selected for the neutron imaging of the given object, and the detector can be used for Bragg edge imaging. The results show that our detector has good performances and can satisfy the requirements of ERNI for detectors at the CSNS
Beam studies of thin single- and double-stage THGEM-based detectors are presented. Several 10 x 10 cm^2 configurations with a total thickness of 5-6 mm (excluding readout electronics), with 1 x 1 cm^2 pads inductively coupled through a resistive laye r to APV-SRS readout electronics, were investigated with muons and pions. Detection efficiencies in the 98% range were recorded with an average pad-multiplicity of ~1.1. The resistive anode resulted in efficient discharge damping, with few-volt potential drops; discharge probabilities were ~10^{-7} for muons and 10^{-6} for pions in the double-stage configuration, at rates of a few kHz/cm^2. These results, together with the robustness of THGEM electrodes against spark damage and their suitability for economic production over large areas make THGEM-based detectors highly competitive compared to the other technologies considered for the SiD-DHCAL.
141 - V. Inshakov 2009
A thick gas electron multiplier is considered for radiation-hard detectors (hadron calorimeter). There was carried out technological and design study to optimize the element structure. The measurements results and the next plans are presented.
375 - F. Barbosa , H. Dong , B. Kross 2011
A mini-PET style detector system is being developed for a plant imaging application with a compact array of silicon photomultipliers (SiPM) replacing position sensitive photomultipliers (PSPMT). In addition to compactness, the use of SiPMs will allow imaging setups involving high strength MRI-type magnetic fields. The latter will allow for better position resolution of the initial positron annihilations in the plant tissue. In the present work, prototype arrays are tested for the uniformity of their response as it is known that PSPMTs require significant gain compensation on the individual channels to achieve an improved uniformity in response. The initial tests indicate a high likelihood that the SiPM arrays can be used without any gain compensation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا