ترغب بنشر مسار تعليمي؟ اضغط هنا

Hawking radiation from phase horizons in laser filaments?

386   0   0.0 ( 0 )
 نشر من قبل Ralf Schutzhold
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Belgiorno et al have reported on experiments aiming at the detection of (the analogue of) Hawking radiation using laser filaments [F. Belgiorno et al, Phys. Rev. Lett. 105, 203901 (2010)]. They sent intense focused Bessel pulses into a non-linear dielectric medium in order to change its refractive index via the Kerr effect and saw creation of photons orthogonal to the direction of travel of the pluses. Since the refractive index change in the pulse generated a phase horizon (where the phase velocity of these photons equals the pulse speed), they concluded that they observed the analogue of Hawking radiation. We study this scenario in a model with a phase horizon and a phase velocity very similar to that of their experiment and find that the effective metric does not quite correspond to a black hole. The photons created in this model are not due to the analogue of black hole evaporation but have more similarities to cosmological particle creation. Nevertheless, even this effect cannot explain the observations -- unless the pulse has significant small scale structure in both the longitudinal and transverse dimensions.

قيم البحث

اقرأ أيضاً

89 - Rabin Banerjee 2008
Hawking radiation is obtained from anomalies resulting from a breaking of diffeomorphism symmetry near the event horizon of a black hole. Such anomalies, manifested as a nonconservation of the energy momentum tensor, occur in two different forms -- c ovariant and consistent. The crucial role of covariant anomalies near the horizon is revealed since this is the {it only} input required to obtain the Hawking flux, thereby highlighting the universality of this effect. A brief description to apply this method to obtain thermodynamic entities like entropy or temperature is provided.
Hawking radiation is obtained from the Reissner-Nordstr{o}m blackhole with a global monopole and the Garfinkle-Horowitz-Strominger blackhole falling in the class of the most general spherically symmetric blackholes $(sqrt{-g} eq1)$, using only chiral anomaly near the event horizon and covariant boundary condition at the event horizon. The approach differs from the anomaly cancellation approach since apart from the covariant boundary condition, the chiral anomaly near the horizon is the only input to derive the Hawking flux.
The Hawking radiation can be viewed from very different perspectives, not all of which can be proved to be rigorously equivalent to one another. On the other hand, an old interest in the zitterbewegung (ZB) of the Dirac electron has recently been rek indled by the investigations on spintronics and graphene, etc. In this letter, we show that, if particles emitted by black holes are electrons or positrons, one can also regard the Hawking radiation as a ZB process.
297 - Ralf Schutzhold 2011
Motivated by recent experimental progress to manipulate the refractive index of dielectric materials by strong laser beams, we study some aspects of the quantum radiation created by such refractive index perturbations.
We consider a gravity theory coupled to matter, where the matter has a higher-dimensional holographic dual. In such a theory, finding quantum extremal surfaces becomes equivalent to finding the RT/HRT surfaces in the higher-dimensional theory. Using this we compute the entropy of Hawking radiation and argue that it follows the Page curve, as suggested by recent computations of the entropy and entanglement wedges for old black holes. The higher-dimensional geometry connects the radiation to the black hole interior in the spirit of ER=EPR. The black hole interior then becomes part of the entanglement wedge of the radiation. Inspired by this, we propose a new rule for computing the entropy of quantum systems entangled with gravitational systems which involves searching for islands in determining the entanglement wedge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا