ﻻ يوجد ملخص باللغة العربية
Let D be an acyclic orientation of the graph G. An arc of D is dependent if its reversal creates a directed cycle. Let m(G) denote the minimum number of dependent arcs over all acyclic orientations of G. For any k > 0, a generalized Mycielski graph M_k(G) of G is defined. Note that M_1(G) is the usual Mycielskian of G. We generalize results concerning m(M_1(G)) in K. L. Collins, K. Tysdal, J. Graph Theory, 46 (2004), 285-296, to m(M_k(G)). The underlying graph of a Hasse diagram is called a cover graph. Let c(G) denote the the minimum number of edges to be deleted from a graph G to get a cover graph. Analogue results about c(G) are also obtained.
We investigate the independence number of two graphs constructed from a polarity of $mathrm{PG}(2,q)$. For the first graph under consideration, the ErdH{o}s-Renyi graph $ER_q$, we provide an improvement on the known lower bounds on its independence n
We show that the cop number of every generalized Petersen graph is at most 4. The strategy is to play a modified game of cops and robbers on an infinite cyclic covering space where the objective is to capture the robber or force the robber towards an
An edge-coloured graph $G$ is called $properly$ $connected$ if every two vertices are connected by a proper path. The $proper$ $connection$ $number$ of a connected graph $G$, denoted by $pc(G)$, is the smallest number of colours that are needed in or
What is the minimum number of triangles in a graph of given order and size? Motivated by earlier results of Mantel and Turan, Rademacher solved the first non-trivial case of this problem in 1941. The problem was revived by ErdH{o}s in 1955; it is now
The minimum forcing number of a graph $G$ is the smallest number of edges simultaneously contained in a unique perfect matching of $G$. Zhang, Ye and Shiu cite{HDW} showed that the minimum forcing number of any fullerene graph was bounded below by $3