ﻻ يوجد ملخص باللغة العربية
At low temperatures, weakly coupled spin chains develop a magnetic order that reflects the character of gapless spin fluctuations along the chains. Using nuclear magnetic resonance, we identify and characterize two ordered states in the gapless region of the antiferromagnetic, Ising-like spin-chain system BaCo2V2O8, both arising from the incommensurate fluctuations along the chains. They correspond to the columnar and ferromagnetic ordered states of the frustrated J1-J2 spin model on a square lattice, where the spins are encoded in original spin chains. As a result of field-dependent incommensurate fluctuations and frustrated interchain interaction, J1 can be tuned continuously with the magnetic field, and its value with respect to a fixed J2 selects the ordered state. Spin-chain systems can thus be used as tunable simulators of frustrated planar magnetism.
The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration
We discuss the magnetic properties of a dimerized and completely frustrated tetrahedral spin-1/2 chain. Using a combination of exact diagonalization and bond-operator theory the quantum phase diagram is shown to incorporate a singlet-product, a dimer
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems such behaviour has typically been associated with competition between short- and long
Using inelastic neutron scattering, we have observed a quasi-one-dimensional dispersive magnetic excitation in the frustrated triangular-lattice spin-2 chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is characterized by a lar
The spin-nematic phase is an intriguing state of matter that lacks usual long-range dipolar order, yet it exhibits higher multipolar order. This makes its detection extremely difficult and controversial. Recently, nuclear magnetic resonance (NMR) has