ﻻ يوجد ملخص باللغة العربية
Recent cosmological data for very large distances challenge the validity of the standard cosmological model. Motivated by the observed spatial flatness the accelerating expansion and the various anisotropies with preferred axes in the universe we examine the consequences of the simple hypothesis that the three-dimensional space has a global R^2 X S^1 topology. We take the radius of the compactification to be the observed cosmological scale beyond which the accelerated expansion starts. We derive the induced corrections to the Newtons gravitational potential and we find that for distances smaller than the S^1-radius the leading 1/r-term is corrected by convergent power series of multipole form in the polar angle making explicit the induced anisotropy by the compactified third dimension. On the other hand, for distances larger than the compactification scale the asymptotic behavior of the potential exhibits a logarithmic dependence with exponentially small corrections. The change of Newtons force from 1/r^2 to 1/r behavior implies a weakening of the deceleration for the expanding universe. Such topologies can also be created locally by standard Newtonian axially symmetric mass distributions with periodicity along the symmetry axis. In such cases we can use our results to obtain measurable modifications of Newtonian orbits for small distances and flat rotation spectra, for large distances at the galactic level.
In braneworld models coming from string theory one generally encounters massless scalar degrees of freedom -moduli- parameterizing the volume of small compact extra-dimensions. Here we discuss the effects of such moduli on Newtons law for a fairly ge
We study the propagation of gravitons within 5-D supersymmetric braneworld models with a bulk scalar field. The setup considered here consists of a 5-D bulk spacetime bounded by two 4-D branes localized at the fixed points of an $S^1/Z_2$ orbifold. T
It is shown that extensions to General Relativity, which introduce a strongly coupled scalar field, can be viable if the interaction has a non-conformal form. Such disformal coupling depends upon the gradients of the scalar field. Thus, if the field
Galactic rotation curves and lack of direct observations of Dark Matter may indicate that General Relativity is not valid (on galactic scale) and should be replaced with another theory. There is the only variant of Absolute Parallelism which solution
We present new constraints on cosmic variations of Newtons gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from Big Bang Nucleosynthesis. We found that cur