ﻻ يوجد ملخص باللغة العربية
We consider the effect of nonmagnetic and magnetic impurities on the superheating field $H_s$ in a type-II superconductor. We solved the Eilenberger equations, which take into account the nonlinear pairbreaking of Meissner screening currents, and calculated $H_s(T)$ for arbitrary temperatures and impurity concentrations in a single-band s-wave superconductor with a large Ginzburg-Landau parameter. At low temperatures nonmagnetic impurities suppress a weak maximum in $H_s(T)$ which has been predicted for the clean limit, resulting instead in a maximum of $H_s$ as a function of impurity concentration in a moderately clean limit. It is shown that nonmagnetic impurities weakly affect $H_s$ even in the dirty limit, while magnetic impurities suppress both $H_s$ and the critical temperature $T_c$. The density of quasiparticles states $N(epsilon)$ is strongly affected by an interplay of impurity scattering and current pairbreaking. We show that a clean superconductor at $H=H_s$ is in a gapless state, but a quasiparticle gap $epsilon_g$ in $N(epsilon)$ at $H=H_s$ appears as the concentration of nonmagnetic impurities increases. As the nonmagnetic scattering rate $alpha$ increases above $alpha_c=0.36$, the quasiparticle gap $epsilon_g(alpha)$ at $H=H_s$ increases, approaching $epsilon_gapprox 0.32Delta_0$ in the dirty limit $alphagg 1$, where $Delta_0$ is the superconducting gap parameter at zero field. The effects of impurities on $H_s$ can be essential for the nonlinear surface resistance and superconductivity breakdown by strong RF fields.
The notion of a finite pairing interaction energy range suggested by Nam, results in some states at the Fermi level not participating in pairings when there are scattering centers such as impurities. The fact that not all states at the Fermi level pa
Combined scanning tunneling microscopy, spectroscopy and local barrier height (LBH) studies show that low-temperature-cleaved optimally-doped Ba(Fe1-xCox)2As2 crystals with x=0.06, with Tc = 22 K, have complicated morphologies. Although the cleavage
At zero magnetic field we have observed an electromagnetic radiation from superconductors subjected by a transverse elastic wave. This radiation has an inertial origin, and is a manifestation of the acoustic Stewart-Tolman effect. The effect is used
Many cuprate superconductors possess an unusual charge-ordered phase that is characterized by an approximate $d_{x^2-y^2}$ intra-unit cell form factor and a finite modulation wavevector $bq^ast$. We study the effects impurities on this charge ordered
We review and analyze magnetization and specific heat investigations on type-II superconductors which uncover remarkable evidence for the magnetic field induced fnite size effect and the associated 3D to 1D crossover which enhances thermal fluctuations.