ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lesser Role of Shear in Star Formation: Insight from the Galactic Ring Survey

270   0   0.0 ( 0 )
 نشر من قبل Sami Dib
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sami Dib




اسأل ChatGPT حول البحث

We analyse the role played by shear in regulating star formation in the Galaxy on the scale of individual molecular clouds. The clouds are selected from the 13^CO J=1-0 line of the Galactic Ring Survey. For each cloud, we estimate the shear parameter which describes the ability of density perturbations to grow within the cloud. We find that for almost all molecular clouds considered, there is no evidence that shear is playing a significant role in opposing the effects of self-gravity. We also find that the shear parameter of the clouds does not depend on their position in the Galaxy. Furthermore, we find no correlations between the shear parameter of the clouds with several indicators of their star formation activity. No significant correlation is found between the shear parameter and the star formation efficiency of the clouds which is measured using the ratio of the massive young stellar objects luminosities, measured in the Red MSX survey, to the cloud mass. There are also no significant correlations between the shear parameter and the fraction of their mass that is found in denser clumps which is a proxy for their clump formation efficiency, nor with their level of fragmentation expressed in the number of clumps per unit mass. Our results strongly suggest that shear is playing only a minor role in affecting the rates and efficiencies at which molecular clouds convert their gas into dense cores and thereafter into stars.

قيم البحث

اقرأ أيضاً

Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5<z<2.5, i.e., at the cosmic peak of the star formation activity. The logarithmic distributions of galaxy SFRs at fixed stellar mass are well described by Gaussians, with starburst galaxies representing only a relatively minor deviation that becomes apparent for SFRs more than 4 times higher than on the main sequence. Such starburst galaxies represent only 2% of mass-selected star forming galaxies and account for only 10% of the cosmic SFR density at z~2. Only when limited to SFR>1000M(sun)/yr, off-sequence sources significantly contribute to the SFR density (46+/-20%). We conclude that merger-driven starbursts play a relatively minor role for the formation of stars in galaxies, whereas they may represent a critical phase towards the quenching of star formation and morphological transformation in galaxies.
Magnetic field amplification by a fast dynamo is seen in local box simulations of SN-driven ISM turbulence, where the self-consistent emergence of large-scale fields agrees very well with its mean-field description. We accordingly derive scaling laws of the turbulent transport coef- ficients in dependence of the SN rate, density and rotation. These provide the input for global simulations of regular magnetic fields in galaxies within a mean-field MHD framework. Using a Kennicutt-Schmidt relation between the star formation (SF) rate and midplane density, we can reduce the number of free parameters in our global models. We consequently present dynamo models for different rotation curves and radial density distributions.
A numerical shearing box is used to perform three-dimensional simulations of a 1 kpc stratified cubic box of turbulent and self-gravitating interstellar medium (in a rotating frame) with supernovae and HII feedback. We vary the value of the velocity gradient induced by the shear and the initial value of the galactic magnetic field. Finally the different star formation rates and the properties of the structures associated with this set of simulations are computed. We first confirm that the feedback has a strong limiting effect on star formation. The galactic shear has also a great influence: the higher the shear, the lower the SFR. Taking the value of the velocity gradient in the solar neighbourhood, the SFR is too high compared to the observed Kennicutt law, by a factor approximately three to six. This discrepancy can be solved by arguing that the relevant value of the shear is not the one in the solar neighbourhood, and that in reality the star formation efficiency within clusters is not 100%. Taking into account the fact that star-forming clouds generally lie in spiral arms where the shear can be substantially higher (as probed by galaxy-scale simulations), the SFR is now close to the observed one. Different numerical recipes have been tested for the sink particles, giving a numerical incertitude of a factor of about two on the SFR. Finally we have also estimated the velocity dispersions in our dense clouds and found that they lie below the observed Larson law by a factor of about two. Conclusions. In our simulations, magnetic field, shear, HII regions, and supernovae all contribute significantly to reduce the SFR. In this numerical setup with feedback from supernovae and HII regions and a relevant value of galactic shear, the SFRs are compatible with those observed, with a numerical incertitude factor of about two.
164 - Jens Kauffmann 2016
Research on Galactic Center star formation is making great advances, in particular due to new data from interferometers spatially resolving molecular clouds in this environment. These new results are discussed in the context of established knowledge about the Galactic Center. Particular attention is paid to suppressed star formation in the Galactic Center and how it might result from shallow density gradients in molecular clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا