ترغب بنشر مسار تعليمي؟ اضغط هنا

Vsini-s for late-type stars from spectral synthesis in K-band region

304   0   0.0 ( 0 )
 نشر من قبل Yuri Lyubchik
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yu. Lyubchik




اسأل ChatGPT حول البحث

We analyse medium-resolution spectra (Rsim 18000) of 19 late type dwarfs in order to determine vsini-s using synthetic rather than observational template spectra. For this purpose observational data around 2.2 $mu$m of stars with spectral classes from G8V to M9.5V were modelled. We find that the Na I (2.2062 and 2.2090 $mu$m) and $^{12}$CO 2-0 band features are modelled well enough to use for vsini determination without the need for a suitable observational template spectra. Within the limit of the resolution of our spectra, we use synthetic spectra templates to derive vsini values consistent with those derived in the optical regime using observed templates. We quantify the errors in our vsini determination due to incorrect choice of model parameters Teff, log $g$, $v_{rm micro}$, [Fe/H] or FWHM and show that they are typically less than 10 per cent. We note that the spectral resolution of our data(sim 16 km/s) limited this study to relatively fast rotators and that resolutions of 60000 will required to access most late-type dwarfs.



قيم البحث

اقرأ أيضاً

Older GCE models predict [K/Fe] ratios as much as 1 dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698 $AA$ resonance line, and the discrepancy between models and observations is in part caused by the LTE assumption. We study the statistical equilibrium of KI, focusing on the non-LTE effects on the $7698 AA$ line. We aim to determine how non-LTE abundances of K can improve the analysis of its chemical evolution, and help to constrain the yields of models. We construct a model atom that employs the most up-to-date data. In particular, we calculate and present inelastic e+K collisional excitation cross-sections from the convergent close-coupling and the $B$-Spline $R$-matrix methods, and H+K collisions from the two-electron model. We constructed a fine grid of non-LTE abundance corrections that span $4000<teff / rm{K}<8000$, $0.50<lgg<5.00$, $-5.00<feh<+0.50$, and applied the corrections to abundances from the literature. In concordance with previous studies, we find severe non-LTE effects in the $7698 AA$ line, which is stronger in non-LTE with abundance corrections that can reach $sim-0.7,dex$. We explore the effects of atmospheric inhomogeneity by computing a full 3D non-LTE stellar spectrum of KI for a test star. We find that 3D is necessary to predict a correct shape of the resonance 7698 $AA$ line, but the line strength is similar to that found in 1D non-LTE. Our non-LTE abundance corrections reduce the scatter and change the cosmic trends of literature K abundances. In the regime [Fe/H]$lesssim-1.0$ the non-LTE abundances show a good agreement with the GCE model with yields from rotating massive stars. The reduced scatter of the non-LTE corrected abundances of a sample of solar twins shows that line-by-line differential analysis techniques cannot fully compensate for systematic modelling errors.
141 - A. Liermann , O.Schnurr , M. Kraus 2014
We present a mini-survey of Galactic B[e] stars mainly undertaken with the Large Binocular Telescope (LBT). B[e] stars show morphological features with hydrogen emission lines and an infrared excess, attributed to warm circumstellar dust. In general, these features are assumed to arise from dense, non-spherical, disk-forming circumstellar material in which molecules and dust can condensate. Due to the lack of reliable luminosities, the class of Galactic B[e] stars contains stars at very different stellar evolutionary phases like Herbig AeBe, supergiants or planetary nebulae. We took near-infrared long-slit K-band spectra for a sample of Galactic B[e] stars with the LBT-Luci I. Prominent spectral features, such as the Brackett gamma line and CO band heads are identified in the spectra. The analysis shows that the stars can be characterized as evolved objects. Among others we find one LBV candidate (MWC314), one supergiant B[e] candidate with 13CO (MWC137) and in two cases (MWC623 and AS 381) indications for the existence of a late-type binary companion, complementary to previous studies. For MWC84, IR spectra were taken at different epochs with LBT-Luci I and the GNIRS spectrograph at the Gemini North telescope. The new data show the disappearance of the circumstellar CO emission around this star, previously detectable over decades. Also no signs of a recent prominent eruption leading to the formation of new CO disk emission are found during 2010 and 2013.
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present NLTE modeling of aluminium using recent and accurate atomic data, in particular utilizing new transition rates for collisions with hydrogen atoms, without the need for any astrophysically calibrated parameters. For the first time, we perform 3D NLTE modeling of aluminium lines in the solar spectrum. We also compute and make available extensive grids of abundance corrections for lines in the optical and near-infrared using one-dimensional model atmospheres, and apply grids of precomputed departure coefficients to direct line synthesis for a set of benchmark stars with accurately known stellar parameters. Our 3D NLTE modeling of the solar spectrum reproduces observed center-to-limb variations in the solar spectrum of the 7835 {AA} line as well as the mid-infrared photospheric emission line at 12.33 micron. We infer a 3D NLTE solar photospheric abundance of A(Al) = 6.43+-0.03, in exact agreement with the meteoritic abundance. We find that abundance corrections vary rapidly with stellar parameters; for the 3961 {AA} resonance line, corrections are positive and may be as large as +1 dex, while corrections for subordinate lines generally have positive sign for warm stars but negative for cool stars. Our modeling reproduces the observed line profiles of benchmark K-giants, and we find abundance corrections as large as -0.3 dex for Arcturus. Our analyses of four metal-poor benchmark stars yield consistent abundances between the 3961 {AA} resonance line and lines in the UV, optical and near-infrared regions. Finally, we discuss implications for the galactic chemical evolution of aluminium.
We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra wi th a resolution of Rsim30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison we test the accuracy and consistency of spectral type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.
We examine the consequences of, and apply, the formalism developed in Terquem (2021) for calculating the rate $D_R$ at which energy is exchanged between fast tides and convection. In this previous work, $D_R$ (which is proportional to the gradient of the convective velocity) was assumed to be positive in order to dissipate the tidal energy. Here we argue that, even if energy is intermittently transferred from convection to the tides, it must ultimately return to the convective flow and transported efficiently to the stellar surface on the convective timescale. This is consistent with, but much less restrictive than, enforcing $D_R>0$. Our principle result is a calculation of the circularization timescale of late-type binaries, taking into account the full time evolution of the stellar structure. We find that circularization is very efficient during the PMS phase, inefficient during the MS, and once again efficient when the star approaches the RGB. These results are in much better agreement with observations than earlier theories. We also apply our formalism to hot Jupiters, and find that tidal dissipation in a Jupiter mass planet yields a circularization timescale of 1 Gyr for an orbital period of 3 d, also in good overall agreement with observations. The approach here is novel, and the apparent success of the theory in resolving longstanding timescale puzzles is compelling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا