ترغب بنشر مسار تعليمي؟ اضغط هنا

Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy

138   0   0.0 ( 0 )
 نشر من قبل Christine Kuntscher
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm$^{-1}$, and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower-energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.



قيم البحث

اقرأ أيضاً

We investigated the electronic and vibrational properties of magnetite at temperatures from 300 K down to 10 K and for pressures up to 10 GPa by far-infrared reflectivity measurements. The Verwey transition is manifested by a drastic decrease of the overall reflectance and the splitting of the phonon modes as well as the activation of additional phonon modes. In the whole studied pressure range the down-shift of the overall reflectance spectrum saturates and the maximum number of phonon modes is reached at a critical temperature, which sets a lower bound for the Verwey transition temperature T$_{mathrm{v}}$. Based on these optical results a pressure-temperature phase diagram for magnetite is proposed.
The relationship is established between the Berry phase and spin crossover in condensed matter physics induced by high pressure. It is shown that the geometric phase has topological origin and can be considered as the order parameter for such transition.
Electrons in correlated insulators are prevented from conducting by Coulomb repulsion between them. When an insulator-to-metal transition is induced in a correlated insulator by doping or heating, the resulting conducting state can be radically diffe rent from that characterized by free electrons in conventional metals. We report on the electronic properties of a prototypical correlated insulator vanadium dioxide (VO2) in which the metallic state can be induced by increasing temperature. Scanning near-field infrared microscopy allows us to directly image nano-scale metallic puddles that appear at the onset of the insulator-to-metal transition. In combination with far-field infrared spectroscopy, the data reveal the Mott transition with divergent quasiparticle mass in the metallic puddles. The experimental approach employed here sets the stage for investigations of charge dynamics on the nanoscale in other inhomogeneous correlated electron systems.
The metal to insulator transition in the charge transfer NiS{2-x}Se{x} compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS2 (lattice contraction) and by Se-alloying (lattice expansion) reveal that in both cases an anomalous metallic state is obtained. We find that optical results are not compatible with the linear Se-alloying vs Pressure scaling relation previously established through transport, thus pointing out the substantially different microscopic origin of the two transitions.
We have studied the electronic structure and charge ordering (Verwey) transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the enhanced probing depth and the use of different surface preparations we are able to distinguish surface and volume effects in the spectra. The pseudogap behavior of the intrinsic spectra and its temperature dependence give evidence for the existence of strongly bound small polarons consistent with both dc and optical conductivity. Together with other recent structural and theoretical results our findings support a picture in which the Verwey transition contains elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا