ﻻ يوجد ملخص باللغة العربية
We discuss various situations where the formation of rocky coast morphology can be attributed to the retro-action of the coast morphology itself on the erosive power of the sea. Destroying the weaker elements of the coast, erosion can creates irregular seashores. In turn, the geometrical irregularity participates in the damping of sea-waves, decreasing their erosive power. There may then exist a mutual self-stabilization of the wave amplitude together with the irregular morphology of the coast. A simple model of this type of stabilization is discussed. The resulting coastline morphologies are diverse, depending mainly on the morphology/damping coupling. In the limit case of weak coupling, the process spontaneously builds fractal morphologies with a dimension close to 4/3. This provides a direct connection between the coastal erosion problem and the theory of percolation. For strong coupling, rugged but non-fractal coasts may emerge during the erosion process, and we investigate a geometrical characterization in these cases. The model is minimal, but can be extended to take into account heterogeneity in the rock lithology and various initial conditions. This allows to mimic coastline complexity, well beyond simple fractality. Our results suggest that the irregular morphology of coastlines as well as the stochastic nature of erosion are deeply connected with the critical aspects of percolation phenomena.
We describe a percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Tissues are considered as structures made of regular healthy, senescent, dead (
We introduce a new model for rill erosion. We start with a network similar to that in the Discrete Web and instantiate a dynamics which makes the process highly non-Markovian. The behavior of nodes in the streams is similar to the behavior of Polya u
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability $C/ r^{1+sigma}$, where $r$ is the distance length between distinct sites. We introduce and test an order $N$ Monte Carlo algorithm and we determine as
We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features
We present the results of a percolation-like model that has been restricted compared to standard percolation models in the sense that we do not allow finite sized clusters to break up once they have formed. We calculate the critical exponents for thi