ترغب بنشر مسار تعليمي؟ اضغط هنا

Shielding experiments by the JASMIN collaboration at Fermilab (II) - Radioactivity measurement induced by secondary particles from the anti-proton production target

100   0   0.0 ( 0 )
 نشر من قبل Nikolai Mokhov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 10**12 protons per second. Samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measured by studying their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.



قيم البحث

اقرأ أيضاً

Neutron spectra in high-energy region between 1 and 100-MeV in the shield configuration of the anti-proton target station and a 120-GeV proton beam at Fermi National Accelerator Laboratory (Fermilab) were determined using the reaction rate data obtai ned with the multi-foil activation method. Two kinds of methods were employed for the determination of neutron spectra: one is the fitting method which is newly developed in this work, another is the unfolding method with SAND-II code. The calculations were performed using the PHITS. From the comparison between the calculated and experimental neutron spectra, it concluded that the PHITS can be used for shielding design of high-energy proton accelerators.
In an antiproton production (Pbar) target station of the Fermi National Accelerator Laboratory (FNAL), the secondary particles produced by bombarding a target with 120-GeV protons are shielded by a thick iron shield. In order to obtain experimental d ata on high-energy neutron transport at more than 100-GeV-proton accelerator facilities, we indirectly measured more than 100-MeV neutrons at the outside of the iron shield at an angle of 50{deg} in the Pbar target station. The measurement was performed by using the Au activation method coupled with a low-background {gamma}-ray counting system. As an indicator for the neutron flux, we determined the production rates of 8 spallation nuclides (196-Au, 188-Pt, 189-Ir, 185-Os, 175-Hf, 173-Lu, 171-Lu, and 169-Yb) in the Au activation detector. The measured production rates were compared with the theoretical production rates calculated using PHITS. We proved that the Au activation method can serve as a powerful tool for indirect measurements of more than 100-MeV neutrons that play a vital role in neutron transport. These results will be important for clarifying the problems in theoretical calculations of high-energy neutron transport.
Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improv e the prediction of the air activation levels, the MARS15 Monte Carlo code radionuclide production model was modified to be used for these studies. Measurements were done to benchmark the new model and verify its use in optimization studies for the new DUNE experiment at the Long Baseline Neutrino Facility (LBNF) at Fermilab. The measured production rates for the most important radionuclides - $^{11}$C, $^{13}$N, $^{15}$O and $^{41}$Ar - are in a good agreement with those calculated with the improved MARS15 code.
At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the coolin g water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% for systems with deionizers, although the deionizers function to remove 7Be from the cooling water.
The power of the proton beam of a high-power spallation neutron source generally ranges from 100 kW to several MW. The distribution of the power density of the beam on the target is critical for the stable operation of the high-power spallation targe t. This study proposes a beam monitoring method that involves restoring the image of a high-power proton beam spot on a target based on the principle of pinhole imaging by using the back-streaming of secondary neutrons from the spallation target. Fast and indirect imaging of the beam spot can be achieved at a distance of tens of meters from the target. The proposed method of beam monitoring can flexibly adjust the size of the pinhole and the measurement distance to control the intensity of flux of the secondary neutrons according to the demands of the detection system, which is far from the high-radiation target area. The results of simulations showed that the proposed method can be used to restore the beam spot of the incident proton by using the point response function and images of the secondary neutrons. Based on the target and the Back-n beamline in the CSNS, the effectiveness of this method has also been confirmed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا