ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavour Condensate and the Dark Sector of the Universe

110   0   0.0 ( 0 )
 نشر من قبل Walter Tarantino
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Walter Tarantino




اسأل ChatGPT حول البحث

This thesis is devoted to the development of a nonperturbative quantum field theoretical approach to flavour physics, with special attention to cosmological applications. Neutrino flavour oscillation is nowadays a fairly well-established experimental fact. However, the formulation of flavour oscillations in a relativistic field theoretical framework presents non-trivial difficulties. A nonperturbative approach for building flavour states has been proposed by Blasone, Vitiello and coworkers. The formalism implies a non-trivial physical vacuum (called flavour vacuum), which might act as a source of Dark Energy. Furthermore, such a vacuum has been recognized as the effective vacuum state arising in the low energy limit of a string theoretical model, D-particle Foam Model. In the attempt of probing the observable phenomenology of the D-particle foam model, a simple toy model (two scalars with mixing `a la Blasone & Vitiello on a adiabatically expanding background) has been studied, proving that the flavour vacuum might behave as Dark Energy under certain assumptions. The first work presented in this thesis represents a development of this approach. A more realistic model is considered, which includes two flavoured Dirac fermions on a generic Friedmann-Robertson-Walker universe. In this framework we show that the flavour vacuum presents different features, which are incompatible with Dark Energy. Motivated by this discrepancy, we next embark on the analysis of a simple supersymmetric model in flat spacetime (free Wess-Zumino), proving that the bosonic component of flavour vacuum acts as Dark Energy, whereas the fermionic as a source of Dark Matter. Finally we develop a new method of calculation that open the way to a nonperturbative extension of these results for interactive theories.



قيم البحث

اقرأ أيضاً

We investigate solutions to the flavour anomalies in $B$ decays based on loop diagrams of a split dark sector characterised by the simultaneous presence of heavy particles at the TeV scale and light particles around and below the $B$-meson mass scale . We show that viable parameter space exists for solutions based on penguin diagrams with a vector mediator, while minimal constructions relying on box diagrams are in strong tension with the constraints from the LHC, LEP, and the anomalous magnetic moment of the muon. In particular, we highlight a regime where the mediator lies close to the $B$-meson mass, naturally realising a resonance structure and a $q^2$-dependent effective coupling. We perform a full fit to the relevant flavour observables and analyse the constraints from intensity frontier experiments. Besides new measurements of the anomalous magnetic moment of the muon, we find that decays of the $B$ meson, $B_s$-mixing, missing energy searches at Belle-II, and LHC searches for top/bottom partners can robustly test these scenarios in the near future.
117 - Andreas Crivellin 2016
Several experiments observed deviations from the Standard Model (SM) in the flavour sector: LHCb found a $4-5,sigma$ discrepancy compared to the SM in $bto smu^+mu^-$ transitions (recently supported by an Belle analysis) and CMS reported a non-zero m easurement of $htomutau$ with a significance of $2.4,sigma$. Furthermore, BELLE, BABAR and LHCb founds hints for the violation of flavour universality in $Bto D^{(*)}tau u$. In addition, there is the long-standing discrepancy in the anomalous magnetic moment of the muon. Interestingly, all these anomalies are related to muons and taus, while the corresponding electron channels seem to be SM like. This suggests that these deviations from the SM might be correlated and we briefly review some selected models providing simultaneous explanations.
180 - Andreas Crivellin 2014
In these proceedings I present a personal perspective of the challenges for new physics (NP) searches in the flavour sector. Since the CKM mechanism of flavour violation has been established to a very high precision, we know that physics beyond the S tandard Model can only contribute sub-dominantly. Therefore, any realistic model of physics beyond the Standard Model (SM) must respect the stringent constrains from flavour observables like $bto s gamma$, $B_stomu^+mu^-$, $Delta F=2$ processes etc., in a first step. In a second step, it is interesting to ask the question if some deviations from the SM predictions (like the anomalous magnetic moment of the muon or recently observed discrepancies in tauonic $B$ decays or $Bto K^*mu^+mu^-$) can be explained by a model of NP without violating bounds from other observables.
113 - Veronique Bernard 2012
We reanalyse the topological susceptibility assuming the possibility of a significant paramagnetic suppression of the three-flavour quark condensate and a correlated enhancement of vacuum fluctuations of $sbar{s}$ pairs. Using the framework of resumm ed ChPT, we point out that simulations performed near the physical point, with a significant mass hierarchy between u,d and s dynamical quarks, are not able to disentangle the contributions from the quark condensate and sea $sbar{s}$-pair fluctuations, and that simulations with three light quark masses of the same order are better suited for this purpose. We perform a combined fit of recent RBC/UKQCD data on pseudoscalar masses and decay constants as well as the topological susceptibility, and we reconsider the determination of lattice spacings in our framework, working out the consequences on the parameters of the chiral Lagrangian. We obtain Sigma(3;2 GeV)^1/3=243 pm 12 MeV for the three-flavour quark condensate in the chiral limit. We notice a significant suppression compared to the two-flavour quark condensate Sigma(2;2 GeV)/Sigma(3;2 GeV)=1.51pm 0.11 and we confirm previous findings of a competition between leading order and next-to-leading order contributions in three-flavour chiral series.
We demonstrate that flavour-changing neutral currents in the top sector, mediated by leptophilic scalars at the electroweak scale, can easily arise in scenarios of new physics, and in particular in composite Higgs models. We moreover show that such i nteractions are poorly constrained by current experiments, while they can be searched for at the LHC in rare top decays and, more generally, in the channels $ppto tS(S)+j$, with $Stoell^+ell^-$. We provide dedicated analyses in this respect, obtaining that cut-off scales as large as $Lambdasim$ 90 TeV can be probed with an integrated luminosity of $mathcal{L} = 150$ fb$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا