ﻻ يوجد ملخص باللغة العربية
Astrophysical neutrinos are expected to be produced in the interactions of ultra-high energy cosmic-rays with surrounding photons. The fluxes of the astrophysical neutrinos are highly dependent on the characteristics of the cosmic-ray sources, such as their cosmological distributions. We study possible constraints on the properties of cosmic-ray sources in a model-independent way using experimentally obtained diffuse neutrino flux above 100 PeV. The semi-analytic formula is derived to estimate the cosmogenic neutrino fluxes as functions of source evolution parameter and source extension in redshift. The obtained formula converts the upper-limits on the neutrino fluxes into the constraints on the cosmic-ray sources. It is found that the recently obtained upper-limit on the cosmogenic neutrinos by IceCube constrains the scenarios with strongly evolving ultra-high energy cosmic-ray sources, and the future limits from an 1 km^3 scale detector are able to further constrain the ultra-high energy cosmic-rays sources with evolutions comparable to the cosmic star formation rate.
The ANtarctic Impulsive Transient Antenna (ANITA) NASA long-duration balloon payload completed its fourth flight in December 2016, after 28 days of flight time. ANITA is sensitive to impulsive broadband radio emission from interactions of ultra-high-
A fundamental question that can be answered in the next decade is: WHAT IS THE ORIGIN OF THE HIGHEST ENERGY COSMIC PARTICLES? The discovery of the sources of the highest energy cosmic rays will reveal the workings of the most energetic astrophysical
The High Resolution Flys Eye experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light
We develop a model for explaining the data of Pierre Auger Observatory (Auger) for Ultra High Energy Cosmic Rays (UHECR), in particular, the mass composition being steadily heavier with increasing energy from 3 EeV to 35 EeV. The model is based on th
We study the production of cosmogenic neutrinos and photons during the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs). For a wide range of models in cosmological evolution of source luminosity, composition and maximum energy we c