ﻻ يوجد ملخص باللغة العربية
We use dynamic scanning capacitance microscopy (DSCM) to image compressible and incompressible strips at the edge of a Hall bar in a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. This method gives access to the complex local conductance, Gts, between a sharp metallic tip scanned across the sample surface and ground, comprising the complex sample conductance. Near integer filling factors we observe a bright stripe along the sample edge in the imaginary part of Gts. The simultaneously recorded real part exhibits a sharp peak at the boundary between the sample interior and the stripe observed in the imaginary part. The features are periodic in the inverse magnetic field and consistent with compressible and incompressible strips forming at the sample edge. For currents larger than the critical current of the QHE break-down the stripes vanish sharply and a homogeneous signal is recovered, similar to zero magnetic field. Our experiments directly illustrate the formation and a variety of properties of the conceptually important QHE edge states at the physical edge of a 2DEG.
We determine the energy splitting of the conduction-band valleys in two-dimensional electrons confined to low-disorder Si quantum wells. We probe the valley splitting dependence on both perpendicular magnetic field $B$ and Hall density by performing
Using Subsurface Charge Accumulation scanning microscopy we image strips of low compressibility corresponding to several integer Quantum Hall filling factors. We study in detail the strips at Landau level filling factors $ u =$ 2 and 4. The observed
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in
We investigate the entanglement spectra arising from sharp real-space partitions of the system for quantum Hall states. These partitions differ from the previously utilized orbital and particle partitions and reveal complementary aspects of the physi
We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a DC bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip position